Cargando…

TEMPERATURE CHARACTERISTICS FOR PULSATION FREQUENCY IN GONIONEMUS

The frequency of contraction of the bell of Gonionemus was studied in relation to temperature, with intact animals and also where different operations were made on the nervous system. A number of values of µ are found for intact animals namely 8,100±, 10,500±, 32,000± and 22,500±, with critical temp...

Descripción completa

Detalles Bibliográficos
Autor principal: Wolf, Ernst
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1928
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2141005/
https://www.ncbi.nlm.nih.gov/pubmed/19872420
_version_ 1782144113325375488
author Wolf, Ernst
author_facet Wolf, Ernst
author_sort Wolf, Ernst
collection PubMed
description The frequency of contraction of the bell of Gonionemus was studied in relation to temperature, with intact animals and also where different operations were made on the nervous system. A number of values of µ are found for intact animals namely 8,100±, 10,500±, 32,000± and 22,500±, with critical temperatures at 9.6°, 12.3°, and 14.0°. Four different classes of operations were used: (1) Animals where the nerve ring was cut on two opposite sides of the bell; the µ values found are 10,500± and 21,300±, with a critical temperature at 13.4°. (2) Animals with four cuts through the nerve ring gave µ = 10,600 ± and µ = 21,000, with a critical temperature at 13.1°. (3) In animals where the bell was cut in half the temperature characteristic was found to be 16,900. And finally (4) in the animals where the nerve ring was totally removed µ values of 8,100, 16,000±, and 29,000 were found, with critical temperatures at 15.0° and 9.4°. These results are discussed from the standpoint of the theory which supposes that definite "temperature characteristics" may be associated with the functional activity of particular elements in a complex functional unit, and that these elements may be separately studied and identified by suitable experimental procedures involving the magnitudes of the respective temperature characteristics and the locations of associated critical temperatures. The swimming bell of medusæ with its marginal sense organs permits a fairly direct approach to such questions. It is found that even slight injuries to the marginal nerve ring, for example, produce specific modifications in the temperature relations which are different from those appearing when the organism is cut in half.
format Text
id pubmed-2141005
institution National Center for Biotechnology Information
language English
publishDate 1928
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21410052008-04-23 TEMPERATURE CHARACTERISTICS FOR PULSATION FREQUENCY IN GONIONEMUS Wolf, Ernst J Gen Physiol Article The frequency of contraction of the bell of Gonionemus was studied in relation to temperature, with intact animals and also where different operations were made on the nervous system. A number of values of µ are found for intact animals namely 8,100±, 10,500±, 32,000± and 22,500±, with critical temperatures at 9.6°, 12.3°, and 14.0°. Four different classes of operations were used: (1) Animals where the nerve ring was cut on two opposite sides of the bell; the µ values found are 10,500± and 21,300±, with a critical temperature at 13.4°. (2) Animals with four cuts through the nerve ring gave µ = 10,600 ± and µ = 21,000, with a critical temperature at 13.1°. (3) In animals where the bell was cut in half the temperature characteristic was found to be 16,900. And finally (4) in the animals where the nerve ring was totally removed µ values of 8,100, 16,000±, and 29,000 were found, with critical temperatures at 15.0° and 9.4°. These results are discussed from the standpoint of the theory which supposes that definite "temperature characteristics" may be associated with the functional activity of particular elements in a complex functional unit, and that these elements may be separately studied and identified by suitable experimental procedures involving the magnitudes of the respective temperature characteristics and the locations of associated critical temperatures. The swimming bell of medusæ with its marginal sense organs permits a fairly direct approach to such questions. It is found that even slight injuries to the marginal nerve ring, for example, produce specific modifications in the temperature relations which are different from those appearing when the organism is cut in half. The Rockefeller University Press 1928-05-20 /pmc/articles/PMC2141005/ /pubmed/19872420 Text en Copyright © Copyright, 1928, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Wolf, Ernst
TEMPERATURE CHARACTERISTICS FOR PULSATION FREQUENCY IN GONIONEMUS
title TEMPERATURE CHARACTERISTICS FOR PULSATION FREQUENCY IN GONIONEMUS
title_full TEMPERATURE CHARACTERISTICS FOR PULSATION FREQUENCY IN GONIONEMUS
title_fullStr TEMPERATURE CHARACTERISTICS FOR PULSATION FREQUENCY IN GONIONEMUS
title_full_unstemmed TEMPERATURE CHARACTERISTICS FOR PULSATION FREQUENCY IN GONIONEMUS
title_short TEMPERATURE CHARACTERISTICS FOR PULSATION FREQUENCY IN GONIONEMUS
title_sort temperature characteristics for pulsation frequency in gonionemus
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2141005/
https://www.ncbi.nlm.nih.gov/pubmed/19872420
work_keys_str_mv AT wolfernst temperaturecharacteristicsforpulsationfrequencyingonionemus