Cargando…

EFFECT OF PROTEINS ON ELECTROPHORETIC MOBILITY AND SEDIMENTATION VELOCITY OF RED CELLS

The isoelectric point of normal red cells cannot be measured but is certainly lower than that of any plasma protein. Red cells are easily damaged so that they will adsorb proteins from low concentrations. Normal red cells do not adsorb protein even from concentrated solutions, as is evidenced by the...

Descripción completa

Detalles Bibliográficos
Autores principales: Monaghan, B. R., White, H. L.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1936
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2141471/
https://www.ncbi.nlm.nih.gov/pubmed/19872956
Descripción
Sumario:The isoelectric point of normal red cells cannot be measured but is certainly lower than that of any plasma protein. Red cells are easily damaged so that they will adsorb proteins from low concentrations. Normal red cells do not adsorb protein even from concentrated solutions, as is evidenced by the finding that the ratio of the mobility of the cells to that of the proteins themselves is at least as high in concentrated casein, albumin, gelatin, or fibrinogen solutions as in dilute. The finding that the observed mobility of red cells is unchanged or only slightly decreased when bulk viscosity is increased by added protein is interpreted as indicating that the red cell surfaces are hydrated. The aggregating effect of certain proteins has been determined and is assumed to be due to their dehydrating effect on the cells. Some types of cells, as beef, are not aggregated, presumably because they are resistant to this dehydrating effect. The difference in the behavior of different types of red cells demonstrates the importance of the nature of the cell as well as of the medium in determining the rate of aggregation and therefore of sedimentation.