Cargando…

THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER)

By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen an...

Descripción completa

Detalles Bibliográficos
Autor principal: Ferguson, John H.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1942
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142521/
https://www.ncbi.nlm.nih.gov/pubmed/19873299
_version_ 1782144295549009920
author Ferguson, John H.
author_facet Ferguson, John H.
author_sort Ferguson, John H.
collection PubMed
description By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (±0.2) pH in salt-containing buffer solutions and pH = 5.3 (±0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution.
format Text
id pubmed-2142521
institution National Center for Biotechnology Information
language English
publishDate 1942
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21425212008-04-23 THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER) Ferguson, John H. J Gen Physiol Article By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (±0.2) pH in salt-containing buffer solutions and pH = 5.3 (±0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution. The Rockefeller University Press 1942-03-20 /pmc/articles/PMC2142521/ /pubmed/19873299 Text en Copyright © Copyright, 1942, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Ferguson, John H.
THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER)
title THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER)
title_full THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER)
title_fullStr THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER)
title_full_unstemmed THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER)
title_short THE FLOCCULATION MAXIMUM (pH) OF FIBRINOGEN AND SOME OTHER BLOOD-CLOTTING REAGENTS. (RELATIVE TURBIDIMETRY WITH THE EVELYN PHOTOELECTRIC COLORIMETER)
title_sort flocculation maximum (ph) of fibrinogen and some other blood-clotting reagents. (relative turbidimetry with the evelyn photoelectric colorimeter)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142521/
https://www.ncbi.nlm.nih.gov/pubmed/19873299
work_keys_str_mv AT fergusonjohnh theflocculationmaximumphoffibrinogenandsomeotherbloodclottingreagentsrelativeturbidimetrywiththeevelynphotoelectriccolorimeter
AT fergusonjohnh flocculationmaximumphoffibrinogenandsomeotherbloodclottingreagentsrelativeturbidimetrywiththeevelynphotoelectriccolorimeter