Cargando…
THE MECHANISM OF THE INHIBITION OF HEMOLYSIS : IV. THE TYPES OF REACTION INVOLVED
This paper contains a description of some of the inhibitory, and occasionally acceleratory, effects of sols of lecithins, cholesterol, and proteins in hemolytic systems containing simple lysins, together with investigations on the nature of the reactions by means of which the effects are brought abo...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1945
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142692/ https://www.ncbi.nlm.nih.gov/pubmed/19873439 |
_version_ | 1782144321796964352 |
---|---|
author | Ponder, Eric |
author_facet | Ponder, Eric |
author_sort | Ponder, Eric |
collection | PubMed |
description | This paper contains a description of some of the inhibitory, and occasionally acceleratory, effects of sols of lecithins, cholesterol, and proteins in hemolytic systems containing simple lysins, together with investigations on the nature of the reactions by means of which the effects are brought about. The principal conclusions are: A. As regards sols of lecithins. 1. In lysin-inhibitor-cell systems, distearyl lecithin is an inhibitor of saponin and digitonin hemolysis, part of the effect being the result of a reaction with the components of the red cell surface and part being the result of a reaction with lysin in the bulk phase of the system. Lecithin ab ovo (Merck) is an accelerator of saponin hemolysis and either an accelerator or an inhibitor of digitonin hemolysis according to the initial concentration of lysin present in the system. Soybean lecithin is an inhibitor of both saponin and digitonin hemolysis, but both soybean lecithin and lecithin ab ovo contain also a hemolytic, or acceleratory, component. 2. The inhibitory effects depend on the order in which the components of the hemolytic system are mixed together. Distearyl lecithin is about 5 times more inhibitory in cell-inhibitor-lysin systems than in lysin-inhibitor-cell systems containing saponin, digitonin, or taurocholate. Lecithin ab ovo is more inhibitory in cell-inhibitor-lysin systems when the time of contact between cells and inhibitor is short, but when it is long, the hemolytic properties of the lecithin offset its inhibitory properties. A similar state of affairs is observed with soybean lecithin. 3. An increase in temperature decreases the inhibitory effect of distearyl lecithin in systems containing saponin or digitonin. B. As regards sols of cholesterol. 4. The quantity of lysin Δ apparently inhibited by a quantity Q of cholesterol sol is dependent on both the type of red cell and the number of red cells added to the system. 5. Δ is a non-linear function of Q and of c (1), the initial quantity of lysin present in the hemolytic system, Δ generally increasing as c (1) increases. 6. The inhibitory effect of cholesterol sols is essentially due to a reaction between the cholesterol and the lysin in the bulk phase of the system, modified by what appear to be redistribution effects which depend on the kind and number of red cells added to complete the hemolytic system. 7. The value of Δ depends on the temperature and on the length of time during which the cholesterol and the lysin remain in contact before the addition of the cells. 8. Distearyl lecithin considerably enhances the inhibitory effects of cholesterol sols. C. As regards the proteins. 9. Freshly prepared serum globulin is inhibitory in systems containing saponin, digitonin, taurocholate, and oleate, and the effect is due to reactions in the bulk phase of the system, modified by redistribution effects. 10. Serum albumin either accelerates or inhibits lysis by saponin, depending on the initial concentration of lysin, and the inhibition depends on such factors as the type of red cell used and the time of contact. In the case of sodium taurocholate, the inhibition has a very marked pH dependence. D. As regards plasma. 11. The way in which the inhibitory effect depends on the length of time during which inhibitor and lysin are in contact before the addition of the cells is not the same when plasma is used as an inhibitor as when a cholesterol sol is used as the inhibitor. The amount of cholesterol sol which is equal in inhibitory power to a given amount of plasma accordingly varies according to the length of the time of contact which is selected. 12. The inhibitory effect in systems containing saponin, plasma, and red cells can be shown to depend on the order in which the components are mixed, when the concentration of the plasma is small. 13. The question as to how much of the inhibitory power of plasma can be accounted for by the contained cholesterol (total or free) is one which can be answered only if the experimental conditions are defined with respect to initial concentration of lysin, time of contact, and several other variables. Very roughly, about 50 per cent of the total inhibition of plasma, or a little more, can be attributed to the cholesterol fraction. 14. Since the inhibitory effects of plasma are the result of reactions in the bulk phase of the system, complicated by redistributions among the phases, of reactions between some of its components and components of the red cell surface, and of enhancing effects of its components upon each other, it is not surprising that nothing better than an empirical expression should have been found to describe the inhibition quantitatively. |
format | Text |
id | pubmed-2142692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1945 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21426922008-04-23 THE MECHANISM OF THE INHIBITION OF HEMOLYSIS : IV. THE TYPES OF REACTION INVOLVED Ponder, Eric J Gen Physiol Article This paper contains a description of some of the inhibitory, and occasionally acceleratory, effects of sols of lecithins, cholesterol, and proteins in hemolytic systems containing simple lysins, together with investigations on the nature of the reactions by means of which the effects are brought about. The principal conclusions are: A. As regards sols of lecithins. 1. In lysin-inhibitor-cell systems, distearyl lecithin is an inhibitor of saponin and digitonin hemolysis, part of the effect being the result of a reaction with the components of the red cell surface and part being the result of a reaction with lysin in the bulk phase of the system. Lecithin ab ovo (Merck) is an accelerator of saponin hemolysis and either an accelerator or an inhibitor of digitonin hemolysis according to the initial concentration of lysin present in the system. Soybean lecithin is an inhibitor of both saponin and digitonin hemolysis, but both soybean lecithin and lecithin ab ovo contain also a hemolytic, or acceleratory, component. 2. The inhibitory effects depend on the order in which the components of the hemolytic system are mixed together. Distearyl lecithin is about 5 times more inhibitory in cell-inhibitor-lysin systems than in lysin-inhibitor-cell systems containing saponin, digitonin, or taurocholate. Lecithin ab ovo is more inhibitory in cell-inhibitor-lysin systems when the time of contact between cells and inhibitor is short, but when it is long, the hemolytic properties of the lecithin offset its inhibitory properties. A similar state of affairs is observed with soybean lecithin. 3. An increase in temperature decreases the inhibitory effect of distearyl lecithin in systems containing saponin or digitonin. B. As regards sols of cholesterol. 4. The quantity of lysin Δ apparently inhibited by a quantity Q of cholesterol sol is dependent on both the type of red cell and the number of red cells added to the system. 5. Δ is a non-linear function of Q and of c (1), the initial quantity of lysin present in the hemolytic system, Δ generally increasing as c (1) increases. 6. The inhibitory effect of cholesterol sols is essentially due to a reaction between the cholesterol and the lysin in the bulk phase of the system, modified by what appear to be redistribution effects which depend on the kind and number of red cells added to complete the hemolytic system. 7. The value of Δ depends on the temperature and on the length of time during which the cholesterol and the lysin remain in contact before the addition of the cells. 8. Distearyl lecithin considerably enhances the inhibitory effects of cholesterol sols. C. As regards the proteins. 9. Freshly prepared serum globulin is inhibitory in systems containing saponin, digitonin, taurocholate, and oleate, and the effect is due to reactions in the bulk phase of the system, modified by redistribution effects. 10. Serum albumin either accelerates or inhibits lysis by saponin, depending on the initial concentration of lysin, and the inhibition depends on such factors as the type of red cell used and the time of contact. In the case of sodium taurocholate, the inhibition has a very marked pH dependence. D. As regards plasma. 11. The way in which the inhibitory effect depends on the length of time during which inhibitor and lysin are in contact before the addition of the cells is not the same when plasma is used as an inhibitor as when a cholesterol sol is used as the inhibitor. The amount of cholesterol sol which is equal in inhibitory power to a given amount of plasma accordingly varies according to the length of the time of contact which is selected. 12. The inhibitory effect in systems containing saponin, plasma, and red cells can be shown to depend on the order in which the components are mixed, when the concentration of the plasma is small. 13. The question as to how much of the inhibitory power of plasma can be accounted for by the contained cholesterol (total or free) is one which can be answered only if the experimental conditions are defined with respect to initial concentration of lysin, time of contact, and several other variables. Very roughly, about 50 per cent of the total inhibition of plasma, or a little more, can be attributed to the cholesterol fraction. 14. Since the inhibitory effects of plasma are the result of reactions in the bulk phase of the system, complicated by redistributions among the phases, of reactions between some of its components and components of the red cell surface, and of enhancing effects of its components upon each other, it is not surprising that nothing better than an empirical expression should have been found to describe the inhibition quantitatively. The Rockefeller University Press 1945-09-20 /pmc/articles/PMC2142692/ /pubmed/19873439 Text en Copyright © Copyright, 1945, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Ponder, Eric THE MECHANISM OF THE INHIBITION OF HEMOLYSIS : IV. THE TYPES OF REACTION INVOLVED |
title | THE MECHANISM OF THE INHIBITION OF HEMOLYSIS : IV. THE TYPES OF REACTION INVOLVED |
title_full | THE MECHANISM OF THE INHIBITION OF HEMOLYSIS : IV. THE TYPES OF REACTION INVOLVED |
title_fullStr | THE MECHANISM OF THE INHIBITION OF HEMOLYSIS : IV. THE TYPES OF REACTION INVOLVED |
title_full_unstemmed | THE MECHANISM OF THE INHIBITION OF HEMOLYSIS : IV. THE TYPES OF REACTION INVOLVED |
title_short | THE MECHANISM OF THE INHIBITION OF HEMOLYSIS : IV. THE TYPES OF REACTION INVOLVED |
title_sort | mechanism of the inhibition of hemolysis : iv. the types of reaction involved |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142692/ https://www.ncbi.nlm.nih.gov/pubmed/19873439 |
work_keys_str_mv | AT pondereric themechanismoftheinhibitionofhemolysisivthetypesofreactioninvolved AT pondereric mechanismoftheinhibitionofhemolysisivthetypesofreactioninvolved |