Cargando…

THE CHEMISTRY OF DAYLIGHT VISION

1. While several reports of photosensitive pigments from the retinas of animals possessing large numbers of cone cells have been published, the only study which could be confirmed was Wald's discovery of iodopsin, a red-sensitive pigment from chicken eyes. 2. In its chemical properties, such as...

Descripción completa

Detalles Bibliográficos
Autor principal: Bliss, Alfred Frederick
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1946
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142748/
https://www.ncbi.nlm.nih.gov/pubmed/19873462
_version_ 1782144326405455872
author Bliss, Alfred Frederick
author_facet Bliss, Alfred Frederick
author_sort Bliss, Alfred Frederick
collection PubMed
description 1. While several reports of photosensitive pigments from the retinas of animals possessing large numbers of cone cells have been published, the only study which could be confirmed was Wald's discovery of iodopsin, a red-sensitive pigment from chicken eyes. 2. In its chemical properties, such as the range of pH stability and the effect of polar organic solvents, iodopsin resembles rhodopsin but is considerably more labile. 3. A partial purification from inert yellow impurities has been effected by prehardening the retinas in pH 4.9 acetate buffer before extraction by 2 per cent digitonin. Rhodopsin was an inevitable contaminant in most methods of extraction, but could be reduced to about 10 per cent of the absorption due to iodopsin by extraction of unhardened retinas with 4 per cent Merck's saponin in ¾ saturated magnesium sulfate for about 1 hour. 4. The rate of bleaching of iodopsin was found to be first order and linear with respect to energy. 5. The bleaching effectiveness spectrum of iodopsin was determined with the aid of color filters of known energy transmission, and shows a maximum at 560 mµ in the yellow green with a lower plateau in the blue. The spectrum is in good agreement with the sensitivity of the human cones except for the wavelength of maximum bleaching effectiveness. The maximum sensitivity of the human cones is found at 540 mµ. 6. Previous reports of changes in pH and inorganic phosphate level of retinas due to bleaching could not be confirmed.
format Text
id pubmed-2142748
institution National Center for Biotechnology Information
language English
publishDate 1946
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21427482008-04-23 THE CHEMISTRY OF DAYLIGHT VISION Bliss, Alfred Frederick J Gen Physiol Article 1. While several reports of photosensitive pigments from the retinas of animals possessing large numbers of cone cells have been published, the only study which could be confirmed was Wald's discovery of iodopsin, a red-sensitive pigment from chicken eyes. 2. In its chemical properties, such as the range of pH stability and the effect of polar organic solvents, iodopsin resembles rhodopsin but is considerably more labile. 3. A partial purification from inert yellow impurities has been effected by prehardening the retinas in pH 4.9 acetate buffer before extraction by 2 per cent digitonin. Rhodopsin was an inevitable contaminant in most methods of extraction, but could be reduced to about 10 per cent of the absorption due to iodopsin by extraction of unhardened retinas with 4 per cent Merck's saponin in ¾ saturated magnesium sulfate for about 1 hour. 4. The rate of bleaching of iodopsin was found to be first order and linear with respect to energy. 5. The bleaching effectiveness spectrum of iodopsin was determined with the aid of color filters of known energy transmission, and shows a maximum at 560 mµ in the yellow green with a lower plateau in the blue. The spectrum is in good agreement with the sensitivity of the human cones except for the wavelength of maximum bleaching effectiveness. The maximum sensitivity of the human cones is found at 540 mµ. 6. Previous reports of changes in pH and inorganic phosphate level of retinas due to bleaching could not be confirmed. The Rockefeller University Press 1946-05-20 /pmc/articles/PMC2142748/ /pubmed/19873462 Text en Copyright © Copyright, 1946, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Bliss, Alfred Frederick
THE CHEMISTRY OF DAYLIGHT VISION
title THE CHEMISTRY OF DAYLIGHT VISION
title_full THE CHEMISTRY OF DAYLIGHT VISION
title_fullStr THE CHEMISTRY OF DAYLIGHT VISION
title_full_unstemmed THE CHEMISTRY OF DAYLIGHT VISION
title_short THE CHEMISTRY OF DAYLIGHT VISION
title_sort chemistry of daylight vision
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142748/
https://www.ncbi.nlm.nih.gov/pubmed/19873462
work_keys_str_mv AT blissalfredfrederick thechemistryofdaylightvision
AT blissalfredfrederick chemistryofdaylightvision