Cargando…
CATION EXCHANGE IN MAMMALIAN ERYTHROCYTES : III. THE PROLYTIC EFFECT OF X-RAYS ON HUMAN CELLS
Freshly drawn heparinized human whole blood is exposed to x-rays in amounts up to 54,000 r in vitro and then equilibrated under a controlled atmosphere at 24 or 38°C. For as long as 26 hours following exposure, potassium is progressively lost from the cells and quantitatively replaced by sodium with...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1951
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147267/ https://www.ncbi.nlm.nih.gov/pubmed/14832447 |
_version_ | 1782144399319236608 |
---|---|
author | Sheppard, C. W. Beyl, Gertrude E. |
author_facet | Sheppard, C. W. Beyl, Gertrude E. |
author_sort | Sheppard, C. W. |
collection | PubMed |
description | Freshly drawn heparinized human whole blood is exposed to x-rays in amounts up to 54,000 r in vitro and then equilibrated under a controlled atmosphere at 24 or 38°C. For as long as 26 hours following exposure, potassium is progressively lost from the cells and quantitatively replaced by sodium with little, if any, osmotic disturbance. The mean rate of loss at 20,000 r and 24°C. is about 0.4 per cent of the initial cell potassium per hour and approximately doubles for a 20,000 r increase. It is accentuated if blood is stored at low temperature (5°C.) following radiation exposure. Isotope experiments show that the rate of entrance of potassium into the cells is practically unaltered, the principal effect being an acceleration of the rate from cells to plasma. This suggests that radiation may have interfered with a mechanism of selective potassium accumulation based on preferential retention of the element. The sodium which enters the cells following irradiation contributes to the rapidly exchanging portion of the cellular sodium, suggesting that this fraction is ionic sodium. |
format | Text |
id | pubmed-2147267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1951 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21472672008-04-23 CATION EXCHANGE IN MAMMALIAN ERYTHROCYTES : III. THE PROLYTIC EFFECT OF X-RAYS ON HUMAN CELLS Sheppard, C. W. Beyl, Gertrude E. J Gen Physiol Article Freshly drawn heparinized human whole blood is exposed to x-rays in amounts up to 54,000 r in vitro and then equilibrated under a controlled atmosphere at 24 or 38°C. For as long as 26 hours following exposure, potassium is progressively lost from the cells and quantitatively replaced by sodium with little, if any, osmotic disturbance. The mean rate of loss at 20,000 r and 24°C. is about 0.4 per cent of the initial cell potassium per hour and approximately doubles for a 20,000 r increase. It is accentuated if blood is stored at low temperature (5°C.) following radiation exposure. Isotope experiments show that the rate of entrance of potassium into the cells is practically unaltered, the principal effect being an acceleration of the rate from cells to plasma. This suggests that radiation may have interfered with a mechanism of selective potassium accumulation based on preferential retention of the element. The sodium which enters the cells following irradiation contributes to the rapidly exchanging portion of the cellular sodium, suggesting that this fraction is ionic sodium. The Rockefeller University Press 1951-05-20 /pmc/articles/PMC2147267/ /pubmed/14832447 Text en Copyright © Copyright, 1951, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Sheppard, C. W. Beyl, Gertrude E. CATION EXCHANGE IN MAMMALIAN ERYTHROCYTES : III. THE PROLYTIC EFFECT OF X-RAYS ON HUMAN CELLS |
title | CATION EXCHANGE IN MAMMALIAN ERYTHROCYTES : III. THE PROLYTIC EFFECT OF X-RAYS ON HUMAN CELLS |
title_full | CATION EXCHANGE IN MAMMALIAN ERYTHROCYTES : III. THE PROLYTIC EFFECT OF X-RAYS ON HUMAN CELLS |
title_fullStr | CATION EXCHANGE IN MAMMALIAN ERYTHROCYTES : III. THE PROLYTIC EFFECT OF X-RAYS ON HUMAN CELLS |
title_full_unstemmed | CATION EXCHANGE IN MAMMALIAN ERYTHROCYTES : III. THE PROLYTIC EFFECT OF X-RAYS ON HUMAN CELLS |
title_short | CATION EXCHANGE IN MAMMALIAN ERYTHROCYTES : III. THE PROLYTIC EFFECT OF X-RAYS ON HUMAN CELLS |
title_sort | cation exchange in mammalian erythrocytes : iii. the prolytic effect of x-rays on human cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147267/ https://www.ncbi.nlm.nih.gov/pubmed/14832447 |
work_keys_str_mv | AT sheppardcw cationexchangeinmammalianerythrocytesiiitheprolyticeffectofxraysonhumancells AT beylgertrudee cationexchangeinmammalianerythrocytesiiitheprolyticeffectofxraysonhumancells |