Cargando…

SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL

Following the preceding studies on the mechanisms of excitation in stretch receptor cells of crayfish, this investigation analyzes inhibitory activity in the synapses formed by two neurons. The cell body of the receptor neuron is located in the periphery and sends dendrites into a fine muscle strand...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuffler, Stephen W., Eyzaguirre, Carlos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1955
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147519/
https://www.ncbi.nlm.nih.gov/pubmed/13252239
_version_ 1782144458573217792
author Kuffler, Stephen W.
Eyzaguirre, Carlos
author_facet Kuffler, Stephen W.
Eyzaguirre, Carlos
author_sort Kuffler, Stephen W.
collection PubMed
description Following the preceding studies on the mechanisms of excitation in stretch receptor cells of crayfish, this investigation analyzes inhibitory activity in the synapses formed by two neurons. The cell body of the receptor neuron is located in the periphery and sends dendrites into a fine muscle strand. The dendrites receive innervation through an accessory nerve fiber which has now been established to be inhibitory. There exists a direct peripheral inhibitory control mechanism which can modulate the activity of the stretch receptor. The receptor cell which can be studied in isolation was stimulated by stretch deformation of its dendrites or by antidromic excitation and the effect of inhibitory impulses on its activity was analyzed. Recording was done mainly with intracellular leads inserted into the cell body. 1. Stimulation of the relatively slowly conducting inhibitory nerve fiber either decreases the afferent discharge rate or stops impulses altogether in stretched receptor cells. The inhibitory action is confined to the dendrites and acts on the generator mechanism which is set up by stretch deformation. By restricting depolarization of the dendrites above a certain level, inhibition prevents the generator potential from attaining the "firing level" of the cell. 2. The same inhibitory impulse may set up a postsynaptic polarization or a depolarization, depending on the resting potential level of the cell. The membrane potential at which the inhibitory synaptic potential reverses its polarity, the equilibrium level, may vary in different preparations. The inhibitory potentials increase as the resting potential is displaced in any direction from the inhibitory equilibrium. 3. The inhibitory potentials usually rise to a peak in about 2 msec. and decay in about 30 msec. After repetitive inhibitory stimulation a delayed secondary polarization phase has frequently been seen, prolonging the inhibitory action. Repetitive inhibitory excitation may also be followed by a period of facilitation. Some examples of "direct" excitation by the depolarizing action of inhibitory impulses are described. 4. The interaction between antidromic and inhibitory impulses was studied. The results support previous conclusions (a) that during stretch the dendrites provide a persisting "drive" for the more central portions of the receptor cell, and (b) that antidromic all-or-none impulses do not penetrate into the distal portions of stretch-depolarized dendrites. The "after-potentials" of antidromic impulses are modified by inhibition. 5. Evidence is presented that inhibitory synaptic activity increases the conductance of the dendrites. This effect may occur in the absence of inhibitory potential changes.
format Text
id pubmed-2147519
institution National Center for Biotechnology Information
language English
publishDate 1955
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21475192008-04-23 SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL Kuffler, Stephen W. Eyzaguirre, Carlos J Gen Physiol Article Following the preceding studies on the mechanisms of excitation in stretch receptor cells of crayfish, this investigation analyzes inhibitory activity in the synapses formed by two neurons. The cell body of the receptor neuron is located in the periphery and sends dendrites into a fine muscle strand. The dendrites receive innervation through an accessory nerve fiber which has now been established to be inhibitory. There exists a direct peripheral inhibitory control mechanism which can modulate the activity of the stretch receptor. The receptor cell which can be studied in isolation was stimulated by stretch deformation of its dendrites or by antidromic excitation and the effect of inhibitory impulses on its activity was analyzed. Recording was done mainly with intracellular leads inserted into the cell body. 1. Stimulation of the relatively slowly conducting inhibitory nerve fiber either decreases the afferent discharge rate or stops impulses altogether in stretched receptor cells. The inhibitory action is confined to the dendrites and acts on the generator mechanism which is set up by stretch deformation. By restricting depolarization of the dendrites above a certain level, inhibition prevents the generator potential from attaining the "firing level" of the cell. 2. The same inhibitory impulse may set up a postsynaptic polarization or a depolarization, depending on the resting potential level of the cell. The membrane potential at which the inhibitory synaptic potential reverses its polarity, the equilibrium level, may vary in different preparations. The inhibitory potentials increase as the resting potential is displaced in any direction from the inhibitory equilibrium. 3. The inhibitory potentials usually rise to a peak in about 2 msec. and decay in about 30 msec. After repetitive inhibitory stimulation a delayed secondary polarization phase has frequently been seen, prolonging the inhibitory action. Repetitive inhibitory excitation may also be followed by a period of facilitation. Some examples of "direct" excitation by the depolarizing action of inhibitory impulses are described. 4. The interaction between antidromic and inhibitory impulses was studied. The results support previous conclusions (a) that during stretch the dendrites provide a persisting "drive" for the more central portions of the receptor cell, and (b) that antidromic all-or-none impulses do not penetrate into the distal portions of stretch-depolarized dendrites. The "after-potentials" of antidromic impulses are modified by inhibition. 5. Evidence is presented that inhibitory synaptic activity increases the conductance of the dendrites. This effect may occur in the absence of inhibitory potential changes. The Rockefeller University Press 1955-09-20 /pmc/articles/PMC2147519/ /pubmed/13252239 Text en Copyright © Copyright, 1955, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Kuffler, Stephen W.
Eyzaguirre, Carlos
SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL
title SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL
title_full SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL
title_fullStr SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL
title_full_unstemmed SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL
title_short SYNAPTIC INHIBITION IN AN ISOLATED NERVE CELL
title_sort synaptic inhibition in an isolated nerve cell
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147519/
https://www.ncbi.nlm.nih.gov/pubmed/13252239
work_keys_str_mv AT kufflerstephenw synapticinhibitioninanisolatednervecell
AT eyzaguirrecarlos synapticinhibitioninanisolatednervecell