Cargando…
Age-Specific Differences in Oncogenic Pathway Deregulation Seen in Human Breast Tumors
PURPOSE: To define the biology driving the aggressive nature of breast cancer arising in young women. EXPERIMENTAL DESIGN: Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young ≤45 years; older ≥65 years), 411 eligible patients (n = 200≤45 years;...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2148101/ https://www.ncbi.nlm.nih.gov/pubmed/18167534 http://dx.doi.org/10.1371/journal.pone.0001373 |
Sumario: | PURPOSE: To define the biology driving the aggressive nature of breast cancer arising in young women. EXPERIMENTAL DESIGN: Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young ≤45 years; older ≥65 years), 411 eligible patients (n = 200≤45 years; n = 211≥65 years) with clinically-annotated Affymetrix microarray data were identified. GSEA, signatures of oncogenic pathway deregulation and predictors of chemotherapy sensitivity were evaluated within the two age-defined cohorts. RESULTS: In comparing deregulation of oncogenic pathways between age groups, a higher probability of PI3K (p = 0.006) and Myc (p = 0.03) pathway deregulation was observed in breast tumors arising in younger women. When evaluating unique patterns of pathway deregulation, a low probability of Src and E2F deregulation in tumors of younger women, concurrent with a higher probability of PI3K, Myc, and β-catenin, conferred a worse prognosis (HR = 4.15). In contrast, a higher probability of Src and E2F pathway activation in tumors of older women, with concurrent low probability of PI3K, Myc and β-catenin deregulation, was associated with poorer outcome (HR = 2.7). In multivariate analyses, genomic clusters of pathway deregulation illustrate prognostic value. CONCLUSION: Results demonstrate that breast cancer arising in young women represents a distinct biologic entity characterized by unique patterns of deregulated signaling pathways that are prognostic, independent of currently available clinico-pathologic variables. These results should enable refinement of targeted treatment strategies in this clinically challenging situation. |
---|