Cargando…

Nup154, a New Drosophila Gene Essential for Male and Female Gametogenesis Is Related to the Nup155 Vertebrate Nucleoporin Gene

The Nup154 gene of Drosophila encodes a protein showing similarity with known nucleoporins: rat Nup155 and yeast Nup170 and Nup157. Hypomorphic mutant alleles of Nup154 affected female and male fertility, allowing investigation of the gene function in various steps of oogenesis and spermatogenesis....

Descripción completa

Detalles Bibliográficos
Autores principales: Gigliotti, Silvia, Callaini, Giuliano, Andone, Silvia, Riparbelli, Maria Giovanna, Pernas-Alonso, Roberto, Hoffmann, Gyula, Graziani, Franco, Malva, Carla
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2149350/
https://www.ncbi.nlm.nih.gov/pubmed/9732281
Descripción
Sumario:The Nup154 gene of Drosophila encodes a protein showing similarity with known nucleoporins: rat Nup155 and yeast Nup170 and Nup157. Hypomorphic mutant alleles of Nup154 affected female and male fertility, allowing investigation of the gene function in various steps of oogenesis and spermatogenesis. Nup154 was required in testes for cyst formation, control of spermatocyte proliferation and meiotic progression. In ovaries, Nup154 was essential for egg chamber development and oocyte growth. In both the male and female germ line, as well as in several other cell types, the Nup154 protein was detected at the nuclear membrane, but was also present inside the nucleus. Intranuclear localization has not previously been described for rat Nup155 or yeast Nup170 and Nup157. In mutant egg chambers the Nup154 protein accumulated in the cytoplasm, while it was only barely detected at the nuclear envelopes. FG repeats containing nucleoporins detected with mAb414 antibody were also mislocalized to a certain extent in Nup154 mutant alleles. This suggests that Nup154 could be required for localizing other nucleoporins within the nuclear pore complex, as previously demonstrated for the yeast Nup170. On the other hand, no evident defects in lamin localization were observed, indicating that Nup155 mutations did not affect the overall integrity of the nuclear envelope. However, ultrastructural analyses revealed that in mutant cells the morphology of the nuclear envelope was altered near the nuclear pore complexes. Finally, the multiplicity of phenotypes observed in Nup154 mutant alleles suggests that this gene plays a crucial role in cell physiology.