Cargando…

Expression of gamma-glutamylcysteine synthetase (gamma-GCS) and multidrug resistance-associated protein (MRP), but not human canalicular multispecific organic anion transporter (cMOAT), genes correlates with exposure of human lung cancers to platinum drugs.

We examined the steady-state levels of mRNA for gamma-glutamylcysteine synthetase (gamma-GCS), multidrug resistance-associated protein (MRP) and human canalicular multispecific organic anion transporter (cMOAT) in human lung cancer specimens to elucidate their roles in relation to platinum drug resi...

Descripción completa

Detalles Bibliográficos
Autores principales: Oguri, T., Fujiwara, Y., Isobe, T., Katoh, O., Watanabe, H., Yamakido, M.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2150117/
https://www.ncbi.nlm.nih.gov/pubmed/9569044
Descripción
Sumario:We examined the steady-state levels of mRNA for gamma-glutamylcysteine synthetase (gamma-GCS), multidrug resistance-associated protein (MRP) and human canalicular multispecific organic anion transporter (cMOAT) in human lung cancer specimens to elucidate their roles in relation to platinum drug resistance in vivo. Seventy-six autopsy samples (38 primary tumours and their corresponding normal lung tissues) obtained from 38 patients were analysed using the quantitative reverse transcription polymerase chain reaction (RT-PCR) method. Both subunits (heavy and light subunits) of gamma-GCS expression levels of normal lung and tumour tissues exposed to platinum drugs during life were significantly higher than those of non-exposed tissues, whereas only the MRP expression levels of tumours were elevated in association with ante-mortem platinum drug exposure. The gamma-GCS and MRP expression levels correlated significantly. The cMOAT expression levels did not correlate with ante-mortem platinum drug exposure. Next, we monitored gamma-GCS heavy subunit expression levels in peripheral mononuclear cells of eight previously untreated lung cancer patients after platinum drug administration, which revealed that these drugs induced gamma-GCS expression in vivo. These results suggest that gamma-GCS expression is induced by platinum drugs in vivo and/or the physiological stress response to xenobiotics.