Cargando…

Chromosomal imbalances in primary and metastatic pancreatic carcinoma as detected by interphase cytogenetics: basic findings and clinical aspects.

To date, cytogenetic studies on pancreatic carcinoma are rare, and little is known about the frequency of cytogenetic aberrations in primary carcinomas compared with metastatic tumour cells. We therefore evaluated the frequency of chromosomal aberrations in 12 primary pancreatic carcinomas and in ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Zojer, N., Fiegl, M., Müllauer, L., Chott, A., Roka, S., Ackermann, J., Raderer, M., Kaufmann, H., Reiner, A., Huber, H., Drach, J.
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2150163/
https://www.ncbi.nlm.nih.gov/pubmed/9579843
Descripción
Sumario:To date, cytogenetic studies on pancreatic carcinoma are rare, and little is known about the frequency of cytogenetic aberrations in primary carcinomas compared with metastatic tumour cells. We therefore evaluated the frequency of chromosomal aberrations in 12 primary pancreatic carcinomas and in effusion specimens from 25 patients with pancreatic cancer by using interphase fluorescence in situ hybridization (FISH) and a panel of four centromeric probes. Hyperdiploidy and chromosomal imbalances, predominantly affecting chromosome 8, were a constant finding in metastatic effusion cells, whereas concordant gain of chromosomes or relative loss of chromosome 18 characterized primary pancreatic carcinomas. The potential role of oncogenes located on chromosome 8 for pancreatic cancer progression was further investigated by double-hybridization studies of aneuploid effusion cells with a probe to 8q24 (MYC) and a centromeric probe to chromosome 8, which demonstrated amplification of the MYC oncogene in two of ten cases (20%). Finally, a potential application of basic findings in the clinical setting was tested by searching for micrometastatic cells in effusions from pancreatic cancer patients primarily negative by FISH. Two-colour FISH in combination with extensive screening (>10,000 nuclei) seems to be a useful tool to unequivocally identify micrometastatic cells by demonstrating hyperdiploidy and intranuclear chromosomal heterogeneity. IMAGES: