Cargando…

Type 3 and Type 1 Ryanodine Receptors Are Localized in Triads of the Same Mammalian Skeletal Muscle Fibers

The type 3 ryanodine receptor (RyR3) is a ubiquitous calcium release channel that has recently been found in mammalian skeletal muscles. However, in contrast to the skeletal muscle isoform (RyR1), neither the subcellular distribution nor the physiological role of RyR3 are known. Here, we used isofor...

Descripción completa

Detalles Bibliográficos
Autores principales: Flucher, Bernhard E., Conti, Antonio, Takeshima, Hiroshi, Sorrentino, Vincenzo
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2150550/
https://www.ncbi.nlm.nih.gov/pubmed/10444070
Descripción
Sumario:The type 3 ryanodine receptor (RyR3) is a ubiquitous calcium release channel that has recently been found in mammalian skeletal muscles. However, in contrast to the skeletal muscle isoform (RyR1), neither the subcellular distribution nor the physiological role of RyR3 are known. Here, we used isoform-specific antibodies to localize RyR3 in muscles of normal and RyR knockout mice. In normal hind limb and diaphragm muscles of young mice, RyR3 was expressed in all fibers where it was codistributed with RyR1 and with the skeletal muscle dihydropyridine receptor. This distribution pattern indicates that RyR3 is localized in the triadic junctions between the transverse tubules and the sarcoplasmic reticulum. During development, RyR3 expression declined rapidly in some fibers whereas other fibers maintained expression of RyR3 into adulthood. Comparing the distribution of RyR3-containing fibers with that of known fiber types did not show a direct correlation. Targeted deletion of the RyR1 or RyR3 gene resulted in the expected loss of the targeted isoform, but had no adverse effects on the expression and localization of the respective other RyR isoform. The localization of RyR3 in skeletal muscle triads, together with RyR1, is consistent with an accessory function of RyR3 in skeletal muscle excitation–contraction coupling.