Cargando…
Dynamic Inositol Trisphosphate-mediated Calcium Signals within Astrocytic Endfeet Underlie Vasodilation of Cerebral Arterioles
Active neurons communicate to intracerebral arterioles in part through an elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) in astrocytes, leading to the generation of vasoactive signals involved in neurovascular coupling. In particular, [Ca(2+)](i) increases in astrocytic processes (“endfee...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151598/ https://www.ncbi.nlm.nih.gov/pubmed/17130519 http://dx.doi.org/10.1085/jgp.200609650 |
Sumario: | Active neurons communicate to intracerebral arterioles in part through an elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) in astrocytes, leading to the generation of vasoactive signals involved in neurovascular coupling. In particular, [Ca(2+)](i) increases in astrocytic processes (“endfeet”), which encase cerebral arterioles, have been shown to result in vasodilation of arterioles in vivo. However, the spatial and temporal properties of endfoot [Ca(2+)](i) signals have not been characterized, and information regarding the mechanism by which these signals arise is lacking. [Ca(2+)](i) signaling in astrocytic endfeet was measured with high spatiotemporal resolution in cortical brain slices, using a fluorescent Ca(2+) indicator and confocal microscopy. Increases in endfoot [Ca(2+)](i) preceded vasodilation of arterioles within cortical slices, as detected by simultaneous measurement of endfoot [Ca(2+)](i) and vascular diameter. Neuronal activity–evoked elevation of endfoot [Ca(2+)](i) was reduced by inhibition of inositol 1,4,5-trisphosphate (InsP(3)) receptor Ca(2+) release channels and almost completely abolished by inhibition of endoplasmic reticulum Ca(2+) uptake. To probe the Ca(2+) release mechanisms present within endfeet, spatially restricted flash photolysis of caged InsP(3) was utilized to liberate InsP(3) directly within endfeet. This maneuver generated large amplitude [Ca(2+)](i) increases within endfeet that were spatially restricted to this region of the astrocyte. These InsP(3)-induced [Ca(2+)](i) increases were sensitive to depletion of the intracellular Ca(2+) store, but not to ryanodine, suggesting that Ca(2+)-induced Ca(2+) release from ryanodine receptors does not contribute to the generation of endfoot [Ca(2+)](i) signals. Neuronally evoked increases in astrocytic [Ca(2+)](i) propagated through perivascular astrocytic processes and endfeet as multiple, distinct [Ca(2+)](i) waves and exhibited a high degree of spatial heterogeneity. Regenerative Ca(2+) release processes within the endfeet were evident, as were localized regions of Ca(2+) release, and treatment of slices with the vasoactive neuropeptides somatostatin and vasoactive intestinal peptide was capable of inducing endfoot [Ca(2+)](i) increases, suggesting the potential for signaling between local interneurons and astrocytic endfeet in the cortex. Furthermore, photorelease of InsP(3) within individual endfeet resulted in a local vasodilation of adjacent arterioles, supporting the concept that astrocytic endfeet function as local “vasoregulatory units” by translating information from active neurons into complex InsP(3)-mediated Ca(2+) release signals that modulate arteriolar diameter. |
---|