Cargando…
Exogenous Expression of β-Catenin Regulates Contact Inhibition, Anchorage-Independent Growth, Anoikis, and Radiation-Induced Cell Cycle Arrest
β-Catenin is an important regulator of cell–cell adhesion and embryonic development that associates with and regulates the function of the LEF/TCF family of transcription factors. Mutations of β-catenin and the tumor suppressor gene, adenomatous polyposis coli, occur in human cancers, but it is not...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2156133/ https://www.ncbi.nlm.nih.gov/pubmed/10459019 |
Sumario: | β-Catenin is an important regulator of cell–cell adhesion and embryonic development that associates with and regulates the function of the LEF/TCF family of transcription factors. Mutations of β-catenin and the tumor suppressor gene, adenomatous polyposis coli, occur in human cancers, but it is not known if, and by what mechanism, increased β-catenin causes cellular transformation. This study demonstrates that modest overexpression of β-catenin in a normal epithelial cell results in cellular transformation. These cells form colonies in soft agar, survive in suspension, and continue to proliferate at high cell density and following γ-irradiation. Endogenous cytoplasmic β-catenin levels and signaling activity were also found to oscillate during the cell cycle. Taken together, these data demonstrate that β-catenin functions as an oncogene by promoting the G(1) to S phase transition and protecting cells from suspension-induced apoptosis (anoikis). |
---|