Cargando…
Erg30, a Vap-33–Related Protein, Functions in Protein Transport Mediated by Copi Vesicles
Intracellular transport of newly synthesized and mature proteins via vesicles is controlled by a large group of proteins. Here we describe a ubiquitous rat protein—endoplasmic reticulum (ER) and Golgi 30-kD protein (ERG30)—which shares structural characteristics with VAP-33, a 33-kD protein from Apl...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2156184/ https://www.ncbi.nlm.nih.gov/pubmed/10427086 |
Sumario: | Intracellular transport of newly synthesized and mature proteins via vesicles is controlled by a large group of proteins. Here we describe a ubiquitous rat protein—endoplasmic reticulum (ER) and Golgi 30-kD protein (ERG30)—which shares structural characteristics with VAP-33, a 33-kD protein from Aplysia californica which was shown to interact with the synaptic protein VAMP. The transmembrane topology of the 30-kD ERG30 corresponds to a type II integral membrane protein, whose cytoplasmic NH(2) terminus contains a predicted coiled-coil motif. We localized ERG30 to the ER and to pre-Golgi intermediates by biochemical and immunocytochemical methods. Consistent with a role in vesicular transport, anti-ERG30 antibodies specifically inhibit intra-Golgi transport in vitro, leading to significant accumulation of COPI-coated vesicles. It appears that ERG30 functions early in the secretory pathway, probably within the Golgi and between the Golgi and the ER. |
---|