Cargando…

Erg30, a Vap-33–Related Protein, Functions in Protein Transport Mediated by Copi Vesicles

Intracellular transport of newly synthesized and mature proteins via vesicles is controlled by a large group of proteins. Here we describe a ubiquitous rat protein—endoplasmic reticulum (ER) and Golgi 30-kD protein (ERG30)—which shares structural characteristics with VAP-33, a 33-kD protein from Apl...

Descripción completa

Detalles Bibliográficos
Autores principales: Soussan, Lior, Burakov, Darya, Daniels, Mathew P., Toister-Achituv, Mira, Porat, Amir, Yarden, Yossef, Elazar, Zvulun
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2156184/
https://www.ncbi.nlm.nih.gov/pubmed/10427086
Descripción
Sumario:Intracellular transport of newly synthesized and mature proteins via vesicles is controlled by a large group of proteins. Here we describe a ubiquitous rat protein—endoplasmic reticulum (ER) and Golgi 30-kD protein (ERG30)—which shares structural characteristics with VAP-33, a 33-kD protein from Aplysia californica which was shown to interact with the synaptic protein VAMP. The transmembrane topology of the 30-kD ERG30 corresponds to a type II integral membrane protein, whose cytoplasmic NH(2) terminus contains a predicted coiled-coil motif. We localized ERG30 to the ER and to pre-Golgi intermediates by biochemical and immunocytochemical methods. Consistent with a role in vesicular transport, anti-ERG30 antibodies specifically inhibit intra-Golgi transport in vitro, leading to significant accumulation of COPI-coated vesicles. It appears that ERG30 functions early in the secretory pathway, probably within the Golgi and between the Golgi and the ER.