Cargando…

Vertebrate Isoforms of Actin Capping Protein β Have Distinct Functions in Vivo

Actin capping protein (CP) binds barbed ends of actin filaments to regulate actin assembly. CP is an α/β heterodimer. Vertebrates have conserved isoforms of each subunit. Muscle cells contain two β isoforms. β1 is at the Z-line; β2 is at the intercalated disc and cell periphery in general. To invest...

Descripción completa

Detalles Bibliográficos
Autores principales: Hart, Marilyn C., Cooper, John A.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168092/
https://www.ncbi.nlm.nih.gov/pubmed/10601341
Descripción
Sumario:Actin capping protein (CP) binds barbed ends of actin filaments to regulate actin assembly. CP is an α/β heterodimer. Vertebrates have conserved isoforms of each subunit. Muscle cells contain two β isoforms. β1 is at the Z-line; β2 is at the intercalated disc and cell periphery in general. To investigate the functions of the isoforms, we replaced one isoform with another using expression in hearts of transgenic mice. Mice expressing β2 had a severe phenotype with juvenile lethality. Myofibril architecture was severely disrupted. The β2 did not localize to the Z-line. Therefore, β1 has a distinct function that includes interactions at the Z-line. Mice expressing β1 showed altered morphology of the intercalated disc, without the lethality or myofibril disruption of the β2-expressing mice. The in vivo function of CP is presumed to involve binding barbed ends of actin filaments. To test this hypothesis, we expressed a β1 mutant that poorly binds actin. These mice showed both myofibril disruption and intercalated disc remodeling, as predicted. Therefore, CPβ1 and CPβ2 each have a distinct function that cannot be provided by the other isoform. CPβ1 attaches actin filaments to the Z-line, and CPβ2 organizes the actin at the intercalated discs.