Cargando…
Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes)
BACKGROUND: The phylogenetic tree of Galliformes (gamebirds, including megapodes, currassows, guinea fowl, New and Old World quails, chicken, pheasants, grouse, and turkeys) has been considerably remodeled over the last decades as new data and analytical methods became available. Analyzing presence/...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169234/ https://www.ncbi.nlm.nih.gov/pubmed/17925025 http://dx.doi.org/10.1186/1471-2148-7-190 |
_version_ | 1782144853953478656 |
---|---|
author | Kriegs, Jan Ole Matzke, Andreas Churakov, Gennady Kuritzin, Andrej Mayr, Gerald Brosius, Jürgen Schmitz, Jürgen |
author_facet | Kriegs, Jan Ole Matzke, Andreas Churakov, Gennady Kuritzin, Andrej Mayr, Gerald Brosius, Jürgen Schmitz, Jürgen |
author_sort | Kriegs, Jan Ole |
collection | PubMed |
description | BACKGROUND: The phylogenetic tree of Galliformes (gamebirds, including megapodes, currassows, guinea fowl, New and Old World quails, chicken, pheasants, grouse, and turkeys) has been considerably remodeled over the last decades as new data and analytical methods became available. Analyzing presence/absence patterns of retroposed elements avoids the problems of homoplastic characters inherent in other methodologies. In gamebirds, chicken repeats 1 (CR1) are the most prevalent retroposed elements, but little is known about the activity of their various subtypes over time. Ascertaining the fixation patterns of CR1 elements would help unravel the phylogeny of gamebirds and other poorly resolved avian clades. RESULTS: We analyzed 1,978 nested CR1 elements and developed a multidimensional approach taking advantage of their transposition in transposition character (TinT) to characterize the fixation patterns of all 22 known chicken CR1 subtypes. The presence/absence patterns of those elements that were active at different periods of gamebird evolution provided evidence for a clade (Cracidae + (Numididae + (Odontophoridae + Phasianidae))) not including Megapodiidae; and for Rollulus as the sister taxon of the other analyzed Phasianidae. Genomic trace sequences of the turkey genome further demonstrated that the endangered African Congo Peafowl (Afropavo congensis) is the sister taxon of the Asian Peafowl (Pavo), rejecting other predominantly morphology-based groupings, and that phasianids are monophyletic, including the sister taxa Tetraoninae and Meleagridinae. CONCLUSION: The TinT information concerning relative fixation times of CR1 subtypes enabled us to efficiently investigate gamebird phylogeny and to reconstruct an unambiguous tree topology. This method should provide a useful tool for investigations in other taxonomic groups as well. |
format | Text |
id | pubmed-2169234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-21692342007-12-29 Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes) Kriegs, Jan Ole Matzke, Andreas Churakov, Gennady Kuritzin, Andrej Mayr, Gerald Brosius, Jürgen Schmitz, Jürgen BMC Evol Biol Research Article BACKGROUND: The phylogenetic tree of Galliformes (gamebirds, including megapodes, currassows, guinea fowl, New and Old World quails, chicken, pheasants, grouse, and turkeys) has been considerably remodeled over the last decades as new data and analytical methods became available. Analyzing presence/absence patterns of retroposed elements avoids the problems of homoplastic characters inherent in other methodologies. In gamebirds, chicken repeats 1 (CR1) are the most prevalent retroposed elements, but little is known about the activity of their various subtypes over time. Ascertaining the fixation patterns of CR1 elements would help unravel the phylogeny of gamebirds and other poorly resolved avian clades. RESULTS: We analyzed 1,978 nested CR1 elements and developed a multidimensional approach taking advantage of their transposition in transposition character (TinT) to characterize the fixation patterns of all 22 known chicken CR1 subtypes. The presence/absence patterns of those elements that were active at different periods of gamebird evolution provided evidence for a clade (Cracidae + (Numididae + (Odontophoridae + Phasianidae))) not including Megapodiidae; and for Rollulus as the sister taxon of the other analyzed Phasianidae. Genomic trace sequences of the turkey genome further demonstrated that the endangered African Congo Peafowl (Afropavo congensis) is the sister taxon of the Asian Peafowl (Pavo), rejecting other predominantly morphology-based groupings, and that phasianids are monophyletic, including the sister taxa Tetraoninae and Meleagridinae. CONCLUSION: The TinT information concerning relative fixation times of CR1 subtypes enabled us to efficiently investigate gamebird phylogeny and to reconstruct an unambiguous tree topology. This method should provide a useful tool for investigations in other taxonomic groups as well. BioMed Central 2007-10-09 /pmc/articles/PMC2169234/ /pubmed/17925025 http://dx.doi.org/10.1186/1471-2148-7-190 Text en Copyright © 2007 Kriegs et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kriegs, Jan Ole Matzke, Andreas Churakov, Gennady Kuritzin, Andrej Mayr, Gerald Brosius, Jürgen Schmitz, Jürgen Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes) |
title | Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes) |
title_full | Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes) |
title_fullStr | Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes) |
title_full_unstemmed | Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes) |
title_short | Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes) |
title_sort | waves of genomic hitchhikers shed light on the evolution of gamebirds (aves: galliformes) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169234/ https://www.ncbi.nlm.nih.gov/pubmed/17925025 http://dx.doi.org/10.1186/1471-2148-7-190 |
work_keys_str_mv | AT kriegsjanole wavesofgenomichitchhikersshedlightontheevolutionofgamebirdsavesgalliformes AT matzkeandreas wavesofgenomichitchhikersshedlightontheevolutionofgamebirdsavesgalliformes AT churakovgennady wavesofgenomichitchhikersshedlightontheevolutionofgamebirdsavesgalliformes AT kuritzinandrej wavesofgenomichitchhikersshedlightontheevolutionofgamebirdsavesgalliformes AT mayrgerald wavesofgenomichitchhikersshedlightontheevolutionofgamebirdsavesgalliformes AT brosiusjurgen wavesofgenomichitchhikersshedlightontheevolutionofgamebirdsavesgalliformes AT schmitzjurgen wavesofgenomichitchhikersshedlightontheevolutionofgamebirdsavesgalliformes |