Cargando…

Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells

We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the α6β4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to f...

Descripción completa

Detalles Bibliográficos
Autores principales: Rabinovitz, Isaac, Toker, Alex, Mercurio, Arthur M.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169473/
https://www.ncbi.nlm.nih.gov/pubmed/10477766
_version_ 1782144883289489408
author Rabinovitz, Isaac
Toker, Alex
Mercurio, Arthur M.
author_facet Rabinovitz, Isaac
Toker, Alex
Mercurio, Arthur M.
author_sort Rabinovitz, Isaac
collection PubMed
description We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the α6β4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express α6β4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the α6β4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis (∼1 ng/ml), the α6β4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained α6β4 in association with F-actin. Importantly, we demonstrate that this mobilization of α6β4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-α and that it is associated with the phosphorylation of the β4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin–rich cell protrusions that mediate α6β4-dependent cell movement but also the disruption of α6β4-containing hemidesmosomes by protein kinase C.
format Text
id pubmed-2169473
institution National Center for Biotechnology Information
language English
publishDate 1999
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21694732008-05-01 Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells Rabinovitz, Isaac Toker, Alex Mercurio, Arthur M. J Cell Biol Original Article We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the α6β4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express α6β4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the α6β4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis (∼1 ng/ml), the α6β4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained α6β4 in association with F-actin. Importantly, we demonstrate that this mobilization of α6β4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-α and that it is associated with the phosphorylation of the β4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin–rich cell protrusions that mediate α6β4-dependent cell movement but also the disruption of α6β4-containing hemidesmosomes by protein kinase C. The Rockefeller University Press 1999-09-06 /pmc/articles/PMC2169473/ /pubmed/10477766 Text en © 1999 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Original Article
Rabinovitz, Isaac
Toker, Alex
Mercurio, Arthur M.
Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells
title Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells
title_full Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells
title_fullStr Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells
title_full_unstemmed Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells
title_short Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells
title_sort protein kinase c–dependent mobilization of the α6β4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169473/
https://www.ncbi.nlm.nih.gov/pubmed/10477766
work_keys_str_mv AT rabinovitzisaac proteinkinasecdependentmobilizationofthea6b4integrinfromhemidesmosomesanditsassociationwithactinrichcellprotrusionsdrivethechemotacticmigrationofcarcinomacells
AT tokeralex proteinkinasecdependentmobilizationofthea6b4integrinfromhemidesmosomesanditsassociationwithactinrichcellprotrusionsdrivethechemotacticmigrationofcarcinomacells
AT mercurioarthurm proteinkinasecdependentmobilizationofthea6b4integrinfromhemidesmosomesanditsassociationwithactinrichcellprotrusionsdrivethechemotacticmigrationofcarcinomacells