Cargando…
Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells
We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the α6β4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to f...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169473/ https://www.ncbi.nlm.nih.gov/pubmed/10477766 |
_version_ | 1782144883289489408 |
---|---|
author | Rabinovitz, Isaac Toker, Alex Mercurio, Arthur M. |
author_facet | Rabinovitz, Isaac Toker, Alex Mercurio, Arthur M. |
author_sort | Rabinovitz, Isaac |
collection | PubMed |
description | We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the α6β4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express α6β4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the α6β4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis (∼1 ng/ml), the α6β4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained α6β4 in association with F-actin. Importantly, we demonstrate that this mobilization of α6β4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-α and that it is associated with the phosphorylation of the β4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin–rich cell protrusions that mediate α6β4-dependent cell movement but also the disruption of α6β4-containing hemidesmosomes by protein kinase C. |
format | Text |
id | pubmed-2169473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1999 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21694732008-05-01 Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells Rabinovitz, Isaac Toker, Alex Mercurio, Arthur M. J Cell Biol Original Article We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the α6β4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express α6β4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the α6β4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis (∼1 ng/ml), the α6β4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained α6β4 in association with F-actin. Importantly, we demonstrate that this mobilization of α6β4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-α and that it is associated with the phosphorylation of the β4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin–rich cell protrusions that mediate α6β4-dependent cell movement but also the disruption of α6β4-containing hemidesmosomes by protein kinase C. The Rockefeller University Press 1999-09-06 /pmc/articles/PMC2169473/ /pubmed/10477766 Text en © 1999 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Original Article Rabinovitz, Isaac Toker, Alex Mercurio, Arthur M. Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells |
title | Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells |
title_full | Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells |
title_fullStr | Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells |
title_full_unstemmed | Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells |
title_short | Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells |
title_sort | protein kinase c–dependent mobilization of the α6β4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169473/ https://www.ncbi.nlm.nih.gov/pubmed/10477766 |
work_keys_str_mv | AT rabinovitzisaac proteinkinasecdependentmobilizationofthea6b4integrinfromhemidesmosomesanditsassociationwithactinrichcellprotrusionsdrivethechemotacticmigrationofcarcinomacells AT tokeralex proteinkinasecdependentmobilizationofthea6b4integrinfromhemidesmosomesanditsassociationwithactinrichcellprotrusionsdrivethechemotacticmigrationofcarcinomacells AT mercurioarthurm proteinkinasecdependentmobilizationofthea6b4integrinfromhemidesmosomesanditsassociationwithactinrichcellprotrusionsdrivethechemotacticmigrationofcarcinomacells |