Cargando…
The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle
In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169477/ https://www.ncbi.nlm.nih.gov/pubmed/10477756 |
_version_ | 1782144884237402112 |
---|---|
author | Theesfeld, Chandra L. Irazoqui, Javier E. Bloom, Kerry Lew, Daniel J. |
author_facet | Theesfeld, Chandra L. Irazoqui, Javier E. Bloom, Kerry Lew, Daniel J. |
author_sort | Theesfeld, Chandra L. |
collection | PubMed |
description | In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to de- fects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins. |
format | Text |
id | pubmed-2169477 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1999 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21694772008-05-01 The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle Theesfeld, Chandra L. Irazoqui, Javier E. Bloom, Kerry Lew, Daniel J. J Cell Biol Original Article In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to de- fects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins. The Rockefeller University Press 1999-09-06 /pmc/articles/PMC2169477/ /pubmed/10477756 Text en © 1999 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Original Article Theesfeld, Chandra L. Irazoqui, Javier E. Bloom, Kerry Lew, Daniel J. The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle |
title | The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle |
title_full | The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle |
title_fullStr | The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle |
title_full_unstemmed | The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle |
title_short | The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle |
title_sort | role of actin in spindle orientation changes during the saccharomyces cerevisiae cell cycle |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169477/ https://www.ncbi.nlm.nih.gov/pubmed/10477756 |
work_keys_str_mv | AT theesfeldchandral theroleofactininspindleorientationchangesduringthesaccharomycescerevisiaecellcycle AT irazoquijaviere theroleofactininspindleorientationchangesduringthesaccharomycescerevisiaecellcycle AT bloomkerry theroleofactininspindleorientationchangesduringthesaccharomycescerevisiaecellcycle AT lewdanielj theroleofactininspindleorientationchangesduringthesaccharomycescerevisiaecellcycle AT theesfeldchandral roleofactininspindleorientationchangesduringthesaccharomycescerevisiaecellcycle AT irazoquijaviere roleofactininspindleorientationchangesduringthesaccharomycescerevisiaecellcycle AT bloomkerry roleofactininspindleorientationchangesduringthesaccharomycescerevisiaecellcycle AT lewdanielj roleofactininspindleorientationchangesduringthesaccharomycescerevisiaecellcycle |