Cargando…

Two Human ARFGAPs Associated with COP-I-Coated Vesicles

ADP-ribosylation factors (ARFs) are critical regulators of vesicular trafficking pathways and act at multiple intracellular sites. ADP-ribosylation factor-GTPase-activating proteins (ARFGAPs) are proposed to contribute to site-specific regulation. In yeast, two distinct proteins, Glo3p and Gcs1p, to...

Descripción completa

Detalles Bibliográficos
Autores principales: Frigerio, Gabriella, Grimsey, Neil, Dale, Martin, Majoul, Irina, Duden, Rainer
Formato: Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171037/
https://www.ncbi.nlm.nih.gov/pubmed/17760859
http://dx.doi.org/10.1111/j.1600-0854.2007.00631.x
_version_ 1782144901072289792
author Frigerio, Gabriella
Grimsey, Neil
Dale, Martin
Majoul, Irina
Duden, Rainer
author_facet Frigerio, Gabriella
Grimsey, Neil
Dale, Martin
Majoul, Irina
Duden, Rainer
author_sort Frigerio, Gabriella
collection PubMed
description ADP-ribosylation factors (ARFs) are critical regulators of vesicular trafficking pathways and act at multiple intracellular sites. ADP-ribosylation factor-GTPase-activating proteins (ARFGAPs) are proposed to contribute to site-specific regulation. In yeast, two distinct proteins, Glo3p and Gcs1p, together provide overlapping, essential ARFGAP function required for coat protein (COP)-I-dependent trafficking. In mammalian cells, only the Gcs1p orthologue, named ARFGAP1, has been characterized in detail. However, Glo3p is known to make the stronger contribution to COP I traffic in yeast. Here, based on a conserved signature motif close to the carboxy terminus, we identify ARFGAP2 and ARFGAP3 as the human orthologues of yeast Glo3p. By immunofluorescence (IF), ARFGAP2 and ARFGAP3 are closely colocalized with coatomer subunits in NRK cells in the Golgi complex and peripheral punctate structures. In contrast to ARFGAP1, both ARFGAP2 and ARFGAP3 are associated with COP-I-coated vesicles generated from Golgi membranes in the presence of GTP-γ-S in vitro. ARFGAP2 lacking its zinc finger domain directly binds to coatomer. Expression of this truncated mutant (ΔN-ARFGAP2) inhibits COP-I-dependent Golgi-to-endoplasmic reticulum transport of cholera toxin (CTX-K63) in vivo. Silencing of ARFGAP1 or a combination of ARFGAP2 and ARFGAP3 in HeLa cells does not decrease cell viability. However, silencing all three ARFGAPs causes cell death. Our data provide strong evidence that ARFGAP2 and ARFGAP3 function in COP I traffic.
format Text
id pubmed-2171037
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-21710372008-01-09 Two Human ARFGAPs Associated with COP-I-Coated Vesicles Frigerio, Gabriella Grimsey, Neil Dale, Martin Majoul, Irina Duden, Rainer Traffic Original Articles ADP-ribosylation factors (ARFs) are critical regulators of vesicular trafficking pathways and act at multiple intracellular sites. ADP-ribosylation factor-GTPase-activating proteins (ARFGAPs) are proposed to contribute to site-specific regulation. In yeast, two distinct proteins, Glo3p and Gcs1p, together provide overlapping, essential ARFGAP function required for coat protein (COP)-I-dependent trafficking. In mammalian cells, only the Gcs1p orthologue, named ARFGAP1, has been characterized in detail. However, Glo3p is known to make the stronger contribution to COP I traffic in yeast. Here, based on a conserved signature motif close to the carboxy terminus, we identify ARFGAP2 and ARFGAP3 as the human orthologues of yeast Glo3p. By immunofluorescence (IF), ARFGAP2 and ARFGAP3 are closely colocalized with coatomer subunits in NRK cells in the Golgi complex and peripheral punctate structures. In contrast to ARFGAP1, both ARFGAP2 and ARFGAP3 are associated with COP-I-coated vesicles generated from Golgi membranes in the presence of GTP-γ-S in vitro. ARFGAP2 lacking its zinc finger domain directly binds to coatomer. Expression of this truncated mutant (ΔN-ARFGAP2) inhibits COP-I-dependent Golgi-to-endoplasmic reticulum transport of cholera toxin (CTX-K63) in vivo. Silencing of ARFGAP1 or a combination of ARFGAP2 and ARFGAP3 in HeLa cells does not decrease cell viability. However, silencing all three ARFGAPs causes cell death. Our data provide strong evidence that ARFGAP2 and ARFGAP3 function in COP I traffic. Blackwell Publishing Ltd 2007-11 2007-08-29 /pmc/articles/PMC2171037/ /pubmed/17760859 http://dx.doi.org/10.1111/j.1600-0854.2007.00631.x Text en © 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd https://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
spellingShingle Original Articles
Frigerio, Gabriella
Grimsey, Neil
Dale, Martin
Majoul, Irina
Duden, Rainer
Two Human ARFGAPs Associated with COP-I-Coated Vesicles
title Two Human ARFGAPs Associated with COP-I-Coated Vesicles
title_full Two Human ARFGAPs Associated with COP-I-Coated Vesicles
title_fullStr Two Human ARFGAPs Associated with COP-I-Coated Vesicles
title_full_unstemmed Two Human ARFGAPs Associated with COP-I-Coated Vesicles
title_short Two Human ARFGAPs Associated with COP-I-Coated Vesicles
title_sort two human arfgaps associated with cop-i-coated vesicles
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171037/
https://www.ncbi.nlm.nih.gov/pubmed/17760859
http://dx.doi.org/10.1111/j.1600-0854.2007.00631.x
work_keys_str_mv AT frigeriogabriella twohumanarfgapsassociatedwithcopicoatedvesicles
AT grimseyneil twohumanarfgapsassociatedwithcopicoatedvesicles
AT dalemartin twohumanarfgapsassociatedwithcopicoatedvesicles
AT majoulirina twohumanarfgapsassociatedwithcopicoatedvesicles
AT dudenrainer twohumanarfgapsassociatedwithcopicoatedvesicles