Cargando…

Traffic of Kv4 K(+) channels mediated by KChIP1 is via a novel post-ER vesicular pathway

The traffic of Kv4 K(+) channels is regulated by the potassium channel interacting proteins (KChIPs). Kv4.2 expressed alone was not retained within the ER, but reached the Golgi complex. Coexpression of KChIP1 resulted in traffic of the channel to the plasma membrane, and traffic was abolished when...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasdemir, Burcu, Fitzgerald, Daniel J., Prior, Ian A., Tepikin, Alexei V., Burgoyne, Robert D.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171252/
https://www.ncbi.nlm.nih.gov/pubmed/16260497
http://dx.doi.org/10.1083/jcb.200506005
Descripción
Sumario:The traffic of Kv4 K(+) channels is regulated by the potassium channel interacting proteins (KChIPs). Kv4.2 expressed alone was not retained within the ER, but reached the Golgi complex. Coexpression of KChIP1 resulted in traffic of the channel to the plasma membrane, and traffic was abolished when mutations were introduced into the EF-hands with channel captured on vesicular structures that colocalized with KChIP1(2–4)-EYFP. The EF-hand mutant had no effect on general exocytic traffic. Traffic of Kv4.2 was coat protein complex I (COPI)–dependent, but KChIP1-containing vesicles were not COPII-coated, and expression of a GTP-loaded Sar1 mutant to block COPII function more effectively inhibited traffic of vesicular stomatitis virus glycoprotein (VSVG) than did KChIP1/Kv4.2 through the secretory pathway. Therefore, KChIP1seems to be targeted to post-ER transport vesicles, different from COPII-coated vesicles and those involved in traffic of VSVG. When expressed in hippocampal neurons, KChIP1 co-distributed with dendritic Golgi outposts; therefore, the KChIP1 pathway could play an important role in local vesicular traffic in neurons.