Cargando…

Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca(2+)-dependent signaling cascade

We uncovered a new pathway of interplay between calreticulin and myocyte-enhancer factor (MEF) 2C, a cardiac-specific transcription factor. We establish that calreticulin works upstream of calcineurin and MEF2C in a Ca(2+)-dependent signal transduction cascade that links the endoplasmic reticulum an...

Descripción completa

Detalles Bibliográficos
Autores principales: Lynch, Jeffrey, Guo, Lei, Gelebart, Pascal, Chilibeck, Kaari, Xu, Jian, Molkentin, Jeffery D., Agellon, Luis B., Michalak, Marek
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171392/
https://www.ncbi.nlm.nih.gov/pubmed/15998798
http://dx.doi.org/10.1083/jcb.200412156
Descripción
Sumario:We uncovered a new pathway of interplay between calreticulin and myocyte-enhancer factor (MEF) 2C, a cardiac-specific transcription factor. We establish that calreticulin works upstream of calcineurin and MEF2C in a Ca(2+)-dependent signal transduction cascade that links the endoplasmic reticulum and the nucleus during cardiac development. In the absence of calreticulin, translocation of MEF2C to the nucleus is compromised. This defect is reversed by calreticulin itself or by a constitutively active form of calcineurin. Furthermore, we show that expression of the calreticulin gene itself is regulated by MEF2C in vitro and in vivo and that, in turn, increased expression of calreticulin affects MEF2C transcriptional activity. The present findings provide a clear molecular explanation for the embryonic lethality observed in calreticulin-deficient mice and emphasize the importance of calreticulin in the early stages of cardiac development. Our study illustrates the existence of a positive feedback mechanism that ensures an adequate supply of releasable Ca(2+) is maintained within the cell for activation of calcineurin and, subsequently, for proper functioning of MEF2C.