Cargando…
Viruses activate a genetically conserved cell death pathway in a unicellular organism
Given the importance of apoptosis in the pathogenesis of virus infections in mammals, we investigated the possibility that unicellular organisms also respond to viral pathogens by activating programmed cell death. The M1 and M2 killer viruses of Saccharomyces cerevisiae encode pore-forming toxins th...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171480/ https://www.ncbi.nlm.nih.gov/pubmed/16061692 http://dx.doi.org/10.1083/jcb.200503069 |
_version_ | 1782144937437954048 |
---|---|
author | Ivanovska, Iva Hardwick, J. Marie |
author_facet | Ivanovska, Iva Hardwick, J. Marie |
author_sort | Ivanovska, Iva |
collection | PubMed |
description | Given the importance of apoptosis in the pathogenesis of virus infections in mammals, we investigated the possibility that unicellular organisms also respond to viral pathogens by activating programmed cell death. The M1 and M2 killer viruses of Saccharomyces cerevisiae encode pore-forming toxins that were assumed to kill uninfected yeast cells by a nonprogrammed assault. However, we found that yeast persistently infected with these killer viruses induce a programmed suicide pathway in uninfected (nonself) yeast. The M1 virus–encoded K1 toxin is primarily but not solely responsible for triggering the death pathway. Cell death is mediated by the mitochondrial fission factor Dnm1/Drp1, the K(+) channel Tok1, and the yeast metacaspase Yca1/Mca1 encoded by the target cell and conserved in mammals. In contrast, cell death is inhibited by yeast Fis1, a pore-forming outer mitochondrial membrane protein. This virus–host relationship in yeast resembles that of pathogenic human viruses that persist in their infected host cells but trigger programmed death of uninfected cells. |
format | Text |
id | pubmed-2171480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21714802008-03-05 Viruses activate a genetically conserved cell death pathway in a unicellular organism Ivanovska, Iva Hardwick, J. Marie J Cell Biol Research Articles Given the importance of apoptosis in the pathogenesis of virus infections in mammals, we investigated the possibility that unicellular organisms also respond to viral pathogens by activating programmed cell death. The M1 and M2 killer viruses of Saccharomyces cerevisiae encode pore-forming toxins that were assumed to kill uninfected yeast cells by a nonprogrammed assault. However, we found that yeast persistently infected with these killer viruses induce a programmed suicide pathway in uninfected (nonself) yeast. The M1 virus–encoded K1 toxin is primarily but not solely responsible for triggering the death pathway. Cell death is mediated by the mitochondrial fission factor Dnm1/Drp1, the K(+) channel Tok1, and the yeast metacaspase Yca1/Mca1 encoded by the target cell and conserved in mammals. In contrast, cell death is inhibited by yeast Fis1, a pore-forming outer mitochondrial membrane protein. This virus–host relationship in yeast resembles that of pathogenic human viruses that persist in their infected host cells but trigger programmed death of uninfected cells. The Rockefeller University Press 2005-08-01 /pmc/articles/PMC2171480/ /pubmed/16061692 http://dx.doi.org/10.1083/jcb.200503069 Text en Copyright © 2005, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Ivanovska, Iva Hardwick, J. Marie Viruses activate a genetically conserved cell death pathway in a unicellular organism |
title | Viruses activate a genetically conserved cell death pathway in a unicellular organism |
title_full | Viruses activate a genetically conserved cell death pathway in a unicellular organism |
title_fullStr | Viruses activate a genetically conserved cell death pathway in a unicellular organism |
title_full_unstemmed | Viruses activate a genetically conserved cell death pathway in a unicellular organism |
title_short | Viruses activate a genetically conserved cell death pathway in a unicellular organism |
title_sort | viruses activate a genetically conserved cell death pathway in a unicellular organism |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171480/ https://www.ncbi.nlm.nih.gov/pubmed/16061692 http://dx.doi.org/10.1083/jcb.200503069 |
work_keys_str_mv | AT ivanovskaiva virusesactivateageneticallyconservedcelldeathpathwayinaunicellularorganism AT hardwickjmarie virusesactivateageneticallyconservedcelldeathpathwayinaunicellularorganism |