Cargando…
Coordinated transport of phosphorylated amyloid-β precursor protein and c-Jun NH(2)-terminal kinase–interacting protein-1
The transmembrane protein amyloid-β precursor protein (APP) and the vesicle-associated protein c-Jun NH(2)-terminal kinase–interacting protein-1 (JIP-1) are transported into axons by kinesin-1. Both proteins may bind to kinesin-1 directly and can be transported separately. Because JIP-1 and APP can...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171566/ https://www.ncbi.nlm.nih.gov/pubmed/16301330 http://dx.doi.org/10.1083/jcb.200502043 |
Sumario: | The transmembrane protein amyloid-β precursor protein (APP) and the vesicle-associated protein c-Jun NH(2)-terminal kinase–interacting protein-1 (JIP-1) are transported into axons by kinesin-1. Both proteins may bind to kinesin-1 directly and can be transported separately. Because JIP-1 and APP can interact, kinesin-1 may recruit them as a complex, enabling their cotransport. In this study, we tested whether APP and JIP-1 are transported together or separately on different vesicles. We found that, within the cellular context, JIP-1 preferentially interacts with Thr(668)-phosphorylated APP (pAPP), compared with nonphosphorylated APP. In neurons, JIP-1 colocalizes with vesicles containing pAPP and is excluded from those containing nonphosphorylated APP. The accumulation of JIP-1 and pAPP in neurites requires kinesin-1, and the expression of a phosphomimetic APP mutant increases JIP-1 transport. Down-regulation of JIP-1 by small interfering RNA specifically impairs transport of pAPP, with no effect on the trafficking of nonphosphorylated APP. These results indicate that the phosphorylation of APP regulates the formation of a pAPP–JIP-1 complex that accumulates in neurites independent of nonphosphorylated APP. |
---|