Cargando…

Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ

I*nterferon-γ (IFN-γ) is believed to contribute to immune-mediated demyelinating disorders by targeting the myelin-producing oligodendrocyte, a cell known to be highly sensitive to the disruption of protein synthesis and to the perturbation of the secretory pathway. We found that apoptosis induced b...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Wensheng, Harding, Heather P., Ron, David, Popko, Brian
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171696/
https://www.ncbi.nlm.nih.gov/pubmed/15911877
http://dx.doi.org/10.1083/jcb.200502086
Descripción
Sumario:I*nterferon-γ (IFN-γ) is believed to contribute to immune-mediated demyelinating disorders by targeting the myelin-producing oligodendrocyte, a cell known to be highly sensitive to the disruption of protein synthesis and to the perturbation of the secretory pathway. We found that apoptosis induced by IFN-γ in cultured rat oligodendrocytes was associated with endoplasmic reticulum (ER) stress. ER stress also accompanied oligodendrocyte apoptosis and hypomyelination in transgenic mice that inappropriately expressed IFN-γ in the central nervous system (CNS). Compared with a wild-type genetic background, the enforced expression of IFN-γ in mice that were heterozygous for a loss of function mutation in pancreatic ER kinase (PERK) dramatically reduced animal survival, promoted CNS hypomyelination, and enhanced oligodendrocyte loss. PERK encodes an ER stress–inducible kinase that phosphorylates eukaryotic translation initiation factor 2α and specifically maintains client protein homeostasis in the stressed ER. Therefore, the hypersensitivity of PERK+/− mice to IFN-γ implicates ER stress in demyelinating disorders that are induced by CNS inflammation.