Cargando…
N-myristoylation determines dual targeting of mammalian NADH-cytochrome b(5) reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning
Mammalian NADH-cytochrome b(5) reductase (b5R) is an N-myristoylated protein that is dually targeted to ER and mitochondrial outer membranes. The N-linked myristate is not required for anchorage to membranes because a stretch of hydrophobic amino acids close to the NH(2) terminus guarantees a tight...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171821/ https://www.ncbi.nlm.nih.gov/pubmed/15738266 http://dx.doi.org/10.1083/jcb.200407082 |
Sumario: | Mammalian NADH-cytochrome b(5) reductase (b5R) is an N-myristoylated protein that is dually targeted to ER and mitochondrial outer membranes. The N-linked myristate is not required for anchorage to membranes because a stretch of hydrophobic amino acids close to the NH(2) terminus guarantees a tight interaction of the protein with the phospholipid bilayer. Instead, the fatty acid is required for targeting of b5R to mitochondria because a nonmyristoylated mutant is exclusively localized to the ER. Here, we have investigated the mechanism by which N-linked myristate affects b5R targeting. We find that myristoylation interferes with interaction of the nascent chain with signal recognition particle, so that a portion of the nascent chains escapes from cotranslational integration into the ER and can be post-translationally targeted to the mitochondrial outer membrane. Thus, competition between two cotranslational events, binding of signal recognition particle and modification by N-myristoylation, determines the site of translation and the localization of b5R. |
---|