Cargando…
TGF-β1 activates two distinct type I receptors in neurons: implications for neuronal NF-κB signaling
Transforming growth factor-βs (TGF-βs) are pleiotropic cytokines involved in development and maintenance of the nervous system. In several neural lesion paradigms, TGF-β1 exerts potent neuroprotective effects. Neurons treated with TGF-β1 activated the canonical TGF-β receptor I/activin-like kinase r...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171851/ https://www.ncbi.nlm.nih.gov/pubmed/15781474 http://dx.doi.org/10.1083/jcb.200407027 |
Sumario: | Transforming growth factor-βs (TGF-βs) are pleiotropic cytokines involved in development and maintenance of the nervous system. In several neural lesion paradigms, TGF-β1 exerts potent neuroprotective effects. Neurons treated with TGF-β1 activated the canonical TGF-β receptor I/activin-like kinase receptor 5 (ALK5) pathway. The transcription factor nuclear factor-κB (NF-κB) plays a fundamental role in neuroprotection. Treatment with TGF-β1 enhanced NF-κB activity in gelshift and reporter gene analyses. However, ectopic expression of a constitutively active ALK5 failed to mimic these effects. ALK1 has been described as an alternative TGF-β receptor in endothelial cells. Interestingly, we detected significant basal expression of ALK1 and its injury-induced up-regulation in neurons. Treatment with TGF-β1 also induced a pronounced increase in downstream Smad1 phosphorylation. Overexpression of a constitutively active ALK1 mimicked the effect of TGF-β1 on NF-κB activation and neuroprotection. Our data suggest that TGF-β1 simultaneously activates two distinct receptor pathways in neurons and that the ALK1 pathway mediates TGF-β1–induced NF-κB survival signaling. |
---|