Cargando…

An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function

The mechanism by which the self-assembling GTPase dynamin functions in vesicle formation remains controversial. Point mutations in shibire, the Drosophila dynamin, cause temperature-sensitive (ts) defects in endocytosis. We show that the ts2 mutation, which occurs in the switch 2 region of dynamin&#...

Descripción completa

Detalles Bibliográficos
Autores principales: Narayanan, Radhakrishnan, Leonard, Marilyn, Song, Byeong Doo, Schmid, Sandra L., Ramaswami, Mani
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171915/
https://www.ncbi.nlm.nih.gov/pubmed/15824135
http://dx.doi.org/10.1083/jcb.200502042
_version_ 1782144988016017408
author Narayanan, Radhakrishnan
Leonard, Marilyn
Song, Byeong Doo
Schmid, Sandra L.
Ramaswami, Mani
author_facet Narayanan, Radhakrishnan
Leonard, Marilyn
Song, Byeong Doo
Schmid, Sandra L.
Ramaswami, Mani
author_sort Narayanan, Radhakrishnan
collection PubMed
description The mechanism by which the self-assembling GTPase dynamin functions in vesicle formation remains controversial. Point mutations in shibire, the Drosophila dynamin, cause temperature-sensitive (ts) defects in endocytosis. We show that the ts2 mutation, which occurs in the switch 2 region of dynamin's GTPase domain, compromises GTP binding affinity. Three second-site suppressor mutations, one in the switch 1 region of the GTPase domain and two in the GTPase effector domain (GED), dynamin's putative GAP, fully rescue the shi(ts2) defects in synaptic vesicle recycling. The functional rescue in vivo correlates with a reduction in both the basal and assembly-stimulated GTPase activity in vitro. These findings demonstrate that GED is indeed an internal dynamin GAP and establish that, as for other GTPase superfamily members, dynamin's function in vivo is negatively regulated by its GAP activity. Based on these and other observations, we propose a two-step model for dynamin during vesicle formation in which an early regulatory GTPase-like function precedes late, assembly-dependent steps during which GTP hydrolysis is required for vesicle release.
format Text
id pubmed-2171915
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21719152008-03-05 An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function Narayanan, Radhakrishnan Leonard, Marilyn Song, Byeong Doo Schmid, Sandra L. Ramaswami, Mani J Cell Biol Research Articles The mechanism by which the self-assembling GTPase dynamin functions in vesicle formation remains controversial. Point mutations in shibire, the Drosophila dynamin, cause temperature-sensitive (ts) defects in endocytosis. We show that the ts2 mutation, which occurs in the switch 2 region of dynamin's GTPase domain, compromises GTP binding affinity. Three second-site suppressor mutations, one in the switch 1 region of the GTPase domain and two in the GTPase effector domain (GED), dynamin's putative GAP, fully rescue the shi(ts2) defects in synaptic vesicle recycling. The functional rescue in vivo correlates with a reduction in both the basal and assembly-stimulated GTPase activity in vitro. These findings demonstrate that GED is indeed an internal dynamin GAP and establish that, as for other GTPase superfamily members, dynamin's function in vivo is negatively regulated by its GAP activity. Based on these and other observations, we propose a two-step model for dynamin during vesicle formation in which an early regulatory GTPase-like function precedes late, assembly-dependent steps during which GTP hydrolysis is required for vesicle release. The Rockefeller University Press 2005-04-11 /pmc/articles/PMC2171915/ /pubmed/15824135 http://dx.doi.org/10.1083/jcb.200502042 Text en Copyright © 2005, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Research Articles
Narayanan, Radhakrishnan
Leonard, Marilyn
Song, Byeong Doo
Schmid, Sandra L.
Ramaswami, Mani
An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function
title An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function
title_full An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function
title_fullStr An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function
title_full_unstemmed An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function
title_short An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function
title_sort internal gap domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171915/
https://www.ncbi.nlm.nih.gov/pubmed/15824135
http://dx.doi.org/10.1083/jcb.200502042
work_keys_str_mv AT narayananradhakrishnan aninternalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT leonardmarilyn aninternalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT songbyeongdoo aninternalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT schmidsandral aninternalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT ramaswamimani aninternalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT narayananradhakrishnan internalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT leonardmarilyn internalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT songbyeongdoo internalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT schmidsandral internalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction
AT ramaswamimani internalgapdomainnegativelyregulatespresynapticdynamininvivoatwostepmodelfordynaminfunction