Cargando…
Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter
In animals, female meiotic spindles are attached to the egg cortex in a perpendicular orientation at anaphase to allow the selective disposal of three haploid chromosome sets into polar bodies. We have identified a complex of interacting Caenorhabditis elegans proteins that are involved in the earli...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171918/ https://www.ncbi.nlm.nih.gov/pubmed/15883196 http://dx.doi.org/10.1083/jcb.200411132 |
_version_ | 1782144988247752704 |
---|---|
author | Yang, Hsin-ya Mains, Paul E. McNally, Francis J. |
author_facet | Yang, Hsin-ya Mains, Paul E. McNally, Francis J. |
author_sort | Yang, Hsin-ya |
collection | PubMed |
description | In animals, female meiotic spindles are attached to the egg cortex in a perpendicular orientation at anaphase to allow the selective disposal of three haploid chromosome sets into polar bodies. We have identified a complex of interacting Caenorhabditis elegans proteins that are involved in the earliest step in asymmetric positioning of anastral meiotic spindles, translocation to the cortex. This complex is composed of the kinesin-1 heavy chain orthologue, UNC-116, the kinesin light chain orthologues, KLC-1 and -2, and a novel cargo adaptor, KCA-1. Depletion of any of these subunits by RNA interference resulted in meiosis I metaphase spindles that remained stationary at a position several micrometers from the cell cortex during the time when wild-type spindles translocated to the cortex. After this prolonged stationary period, unc-116(RNAi) spindles moved to the cortex through a partially redundant mechanism that is dependent on the anaphase-promoting complex. This study thus reveals two sequential mechanisms for translocating anastral spindles to the oocyte cortex. |
format | Text |
id | pubmed-2171918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21719182008-03-05 Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter Yang, Hsin-ya Mains, Paul E. McNally, Francis J. J Cell Biol Research Articles In animals, female meiotic spindles are attached to the egg cortex in a perpendicular orientation at anaphase to allow the selective disposal of three haploid chromosome sets into polar bodies. We have identified a complex of interacting Caenorhabditis elegans proteins that are involved in the earliest step in asymmetric positioning of anastral meiotic spindles, translocation to the cortex. This complex is composed of the kinesin-1 heavy chain orthologue, UNC-116, the kinesin light chain orthologues, KLC-1 and -2, and a novel cargo adaptor, KCA-1. Depletion of any of these subunits by RNA interference resulted in meiosis I metaphase spindles that remained stationary at a position several micrometers from the cell cortex during the time when wild-type spindles translocated to the cortex. After this prolonged stationary period, unc-116(RNAi) spindles moved to the cortex through a partially redundant mechanism that is dependent on the anaphase-promoting complex. This study thus reveals two sequential mechanisms for translocating anastral spindles to the oocyte cortex. The Rockefeller University Press 2005-05-09 /pmc/articles/PMC2171918/ /pubmed/15883196 http://dx.doi.org/10.1083/jcb.200411132 Text en Copyright © 2005, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Yang, Hsin-ya Mains, Paul E. McNally, Francis J. Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter |
title | Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter |
title_full | Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter |
title_fullStr | Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter |
title_full_unstemmed | Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter |
title_short | Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter |
title_sort | kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through kca-1, a novel cargo adapter |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171918/ https://www.ncbi.nlm.nih.gov/pubmed/15883196 http://dx.doi.org/10.1083/jcb.200411132 |
work_keys_str_mv | AT yanghsinya kinesin1mediatestranslocationofthemeioticspindletotheoocytecortexthroughkca1anovelcargoadapter AT mainspaule kinesin1mediatestranslocationofthemeioticspindletotheoocytecortexthroughkca1anovelcargoadapter AT mcnallyfrancisj kinesin1mediatestranslocationofthemeioticspindletotheoocytecortexthroughkca1anovelcargoadapter |