Cargando…

Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum

fA amily of aspartic proteases, the plasmepsins (PMs), plays a key role in the degradation of hemoglobin in the Plasmodium falciparum food vacuole. To study the trafficking of proPM II, we have modified the chromosomal PM II gene in P. falciparum to encode a proPM II–GFP chimera. By taking advantage...

Descripción completa

Detalles Bibliográficos
Autores principales: Klemba, Michael, Beatty, Wandy, Gluzman, Ilya, Goldberg, Daniel E.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171955/
https://www.ncbi.nlm.nih.gov/pubmed/14709539
http://dx.doi.org/10.1083/jcb200307147
Descripción
Sumario:fA amily of aspartic proteases, the plasmepsins (PMs), plays a key role in the degradation of hemoglobin in the Plasmodium falciparum food vacuole. To study the trafficking of proPM II, we have modified the chromosomal PM II gene in P. falciparum to encode a proPM II–GFP chimera. By taking advantage of green fluorescent protein fluorescence in live parasites, the ultrastructural resolution of immunoelectron microscopy, and inhibitors of trafficking and PM maturation, we have investigated the biosynthetic path leading to mature PM II in the food vacuole. Our data support a model whereby proPM II is transported through the secretory system to cytostomal vacuoles and then is carried along with its substrate hemoglobin to the food vacuole where it is proteolytically processed to mature PM II.