Cargando…

Amyloid-β peptide induces oligodendrocyte death by activating the neutral sphingomyelinase–ceramide pathway

Amyloid-β peptide (Aβ) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Aβ induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jiunn-Tay, Xu, Jan, Lee, Jin-Moo, Ku, Grace, Han, Xianlin, Yang, Ding-I, Chen, Shawei, Hsu, Chung Y.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171973/
https://www.ncbi.nlm.nih.gov/pubmed/14709545
http://dx.doi.org/10.1083/jcb.200307017
Descripción
Sumario:Amyloid-β peptide (Aβ) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Aβ induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Aβ-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Aβ and ceramide induced OLG death. In addition, Aβ activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Aβ cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Aβ-induced OLG death. Glutathione (GSH) precursors inhibited Aβ activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Aβ-induced death. These results suggest that Aβ induces OLG death by activating the nSMase–ceramide cascade via an oxidative mechanism.