Cargando…
WASp is required for the correct temporal morphogenesis of rhabdomere microvilli
Microvilli are actin-based fingerlike membrane projections that form the basis of the brush border of enterocytes and the Drosophila melanogaster photoreceptor rhabdomere. Although many microvillar cytoskeletal components have been identified, the molecular basis of microvillus formation is largely...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172231/ https://www.ncbi.nlm.nih.gov/pubmed/14744998 http://dx.doi.org/10.1083/jcb.200307048 |
Sumario: | Microvilli are actin-based fingerlike membrane projections that form the basis of the brush border of enterocytes and the Drosophila melanogaster photoreceptor rhabdomere. Although many microvillar cytoskeletal components have been identified, the molecular basis of microvillus formation is largely undefined. Here, we report that the Wiskott-Aldrich syndrome protein (WASp) is necessary for rhabdomere microvillus morphogenesis. We show that WASp accumulates on the photoreceptor apical surface before microvillus formation, and at the time of microvillus initiation WASp colocalizes with amphiphysin and moesin. The loss of WASp delays the enrichment of F-actin on the apical photoreceptor surface, delays the appearance of the primordial microvillar projections, and subsequently leads to malformed rhabdomeres. |
---|