Cargando…

Local signaling by the EGF receptor

Differing spatial scales of signaling cascades are critical for cell orientation during chemotactic responses. We used biotin EGF bound to streptavidin-coupled magnetic beads to locally stimulate cells overexpressing the EGF receptor. We have found that EGF-induced actin polymerization remains local...

Descripción completa

Detalles Bibliográficos
Autores principales: Kempiak, Stephan J., Yip, Shu-Chin, Backer, Jonathan M., Segall, Jeffrey E.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172819/
https://www.ncbi.nlm.nih.gov/pubmed/12952932
http://dx.doi.org/10.1083/jcb.200303144
Descripción
Sumario:Differing spatial scales of signaling cascades are critical for cell orientation during chemotactic responses. We used biotin EGF bound to streptavidin-coupled magnetic beads to locally stimulate cells overexpressing the EGF receptor. We have found that EGF-induced actin polymerization remains localized even under conditions of receptor overexpression. Conversely, EGF-induced ERK activation spreads throughout the cell body after EGF bead stimulation. The localized actin polymerization is independent of PI3-kinase and rho protein activity and requires Arp2/3 complex and cofilin function. Thus, we find differing spatial scales of signaling from the EGF receptor, supporting models of chemotaxis that integrate short- and long-range signaling.