Cargando…

Molecular requirements for actin-based lamella formation in Drosophila S2 cells

Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of ∼90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogers, Stephen L., Wiedemann, Ursula, Stuurman, Nico, Vale, Ronald D.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172842/
https://www.ncbi.nlm.nih.gov/pubmed/12975351
http://dx.doi.org/10.1083/jcb.200303023
Descripción
Sumario:Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of ∼90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we find that lamellae formation requires a relatively small set of proteins that participate in actin nucleation (Arp2/3 and SCAR), barbed end capping (capping protein), filament depolymerization (cofilin and Aip1), and actin monomer binding (profilin and cyclase-associated protein). Lamellae are initiated by parallel and partially redundant signaling pathways involving Rac GTPases and the adaptor protein Nck, which stimulate SCAR, an Arp2/3 activator. We also show that RNAi of three proteins (kette, Abi, and Sra-1) known to copurify with and inhibit SCAR in vitro leads to SCAR degradation, revealing a novel function of this protein complex in SCAR stability. Our results have identified an essential set of proteins involved in actin dynamics during lamella formation in Drosophila S2 cells.