Cargando…

Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF

BACKGROUND: Enhanced osteoblast-dependent osteoclastogenesis due to inhibition of Wnt/β-catenin signaling in bone morphogenic protein (BMP)-driven osteoprogenitors has been repeatedly implicated in the natural history of cancer-associated osteolytic lesions, but the mechanism of this bone loss is po...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujita, Ken-ichi, Janz, Siegfried
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173906/
https://www.ncbi.nlm.nih.gov/pubmed/17971207
http://dx.doi.org/10.1186/1476-4598-6-71
Descripción
Sumario:BACKGROUND: Enhanced osteoblast-dependent osteoclastogenesis due to inhibition of Wnt/β-catenin signaling in bone morphogenic protein (BMP)-driven osteoprogenitors has been repeatedly implicated in the natural history of cancer-associated osteolytic lesions, but the mechanism of this bone loss is poorly understood. METHODS: We examined the impact of secreted Wnt inhibitors from the Dickkopf (Dkk) family on pluripotent mesenchymal cells undergoing BMP2-induced osteoblastic differentiation. RESULTS: We found that Dkk1 and -2 restored the Wnt3a-dependent reduction of alkaline phosphatase (ALP), Osterix and p53, indicating that mitigated Wnt/β-catenin signaling promotes certain aspects of early osteoblastogenesis through the BMP-p53-Osterix-ALP axis. Dkk1 and -2 increased the expression of the osteoclast differentiation factors, receptor activator of NF-κB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), upon stimulation with Wnt3a/1,25-dihydroxyvitamine D(3 )and Wnt3a/BMP2, respectively. The decoy receptor of RANKL, osteoprotegerin (OPG), was down regulated under the latter conditions. These findings indicated that Dkk1 and -2 facilitate osteoclastogenesis by enhancing RANKL/RANK and M-CSF/c-Fms interactions. Dkk4 weakly shared activities of Dkk-1 and -2, whereas Dkk3 was ineffective. CONCLUSION: Our results suggest that inhibited Wnt/β-catenin signaling in BMP2-induced osteoprogenitors in vivo promotes, on balance, the heightened formation of osteoclasts. Focally increased Dkk1 production by tumor cells in the bone may thus lead to focal bone loss.