Cargando…

Charge Scan Reveals an Extended Region at the Intracellular End of the GABA Receptor Pore that Can Influence Ion Selectivity

Selective permeability is a fundamental property of ion channels. The Cys-loop receptor superfamily is composed of both excitatory (ACh, 5-HT) and inhibitory (GABA, glycine) neurotransmitter-operated ion channels. In the GABA receptor, it has been previously shown that the charge selectivity of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Wotring, Virginia E., Weiss, David S.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174155/
https://www.ncbi.nlm.nih.gov/pubmed/18079559
http://dx.doi.org/10.1085/jgp.200609701
Descripción
Sumario:Selective permeability is a fundamental property of ion channels. The Cys-loop receptor superfamily is composed of both excitatory (ACh, 5-HT) and inhibitory (GABA, glycine) neurotransmitter-operated ion channels. In the GABA receptor, it has been previously shown that the charge selectivity of the integral pore can be altered by a single mutation near the intracellular end of the second transmembrane-spanning domain (TM2). We have extended these findings and now show that charge selectivity of the anionic ρ1 GABA receptor can be influenced by the introduction of glutamates, one at a time, over an 8–amino acid stretch (−2′ to 5′) in the proposed intracellular end of TM2 and the TM1–TM2 intracellular linker. Depending on the position, glutamate substitutions in this region produced sodium to chloride permeability ratios (P(Na)+(/Cl)−) varying from 0.64 to 3.4 (wild type P(Na)+(/Cl)− = 0). In addition to providing insight into the mechanism of ion selectivity, this functional evidence supports a model proposed for the homologous nicotinic acetylcholine receptor in which regions of the protein, in addition to TM2, form the ion pathway.