Cargando…

Mutations in β-Spectrin Disrupt Axon Outgrowth and Sarcomere Structure

β-Spectrin is a major component of the membrane skeleton, a structure found at the plasma membrane of most animal cells. β-Spectrin and the membrane skeleton have been proposed to stabilize cell membranes, generate cell polarity, or localize specific membrane proteins. We demonstrate that the Caenor...

Descripción completa

Detalles Bibliográficos
Autores principales: Hammarlund, Marc, Davis, Warren S., Jorgensen, Erik M.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174563/
https://www.ncbi.nlm.nih.gov/pubmed/10811832
Descripción
Sumario:β-Spectrin is a major component of the membrane skeleton, a structure found at the plasma membrane of most animal cells. β-Spectrin and the membrane skeleton have been proposed to stabilize cell membranes, generate cell polarity, or localize specific membrane proteins. We demonstrate that the Caenorhabditis elegans homologue of β-spectrin is encoded by the unc-70 gene. unc-70 null mutants develop slowly, and the adults are paralyzed and dumpy. However, the membrane integrity is not impaired in unc-70 animals, nor is cell polarity affected. Thus, β-spectrin is not essential for general membrane integrity or for cell polarity. However, β-spectrin is required for a subset of processes at cell membranes. In neurons, the loss of β-spectrin leads to abnormal axon outgrowth. In muscles, a loss of β-spectrin leads to disorganization of the myofilament lattice, discontinuities in the dense bodies, and a reduction or loss of the sarcoplasmic reticulum. These defects are consistent with β-spectrin function in anchoring proteins at cell membranes.