Cargando…
Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation
The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174970/ https://www.ncbi.nlm.nih.gov/pubmed/18184036 http://dx.doi.org/10.1371/journal.pbio.0060004 |
_version_ | 1782145399856824320 |
---|---|
author | Zhu, Haisun Sauman, Ivo Yuan, Quan Casselman, Amy Emery-Le, Myai Emery, Patrick Reppert, Steven M |
author_facet | Zhu, Haisun Sauman, Ivo Yuan, Quan Casselman, Amy Emery-Le, Myai Emery, Patrick Reppert, Steven M |
author_sort | Zhu, Haisun |
collection | PubMed |
description | The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry), designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL) in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b) mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain—as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass. |
format | Text |
id | pubmed-2174970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-21749702008-01-08 Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation Zhu, Haisun Sauman, Ivo Yuan, Quan Casselman, Amy Emery-Le, Myai Emery, Patrick Reppert, Steven M PLoS Biol Research Article The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry), designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL) in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b) mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain—as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass. Public Library of Science 2008-01 2008-01-08 /pmc/articles/PMC2174970/ /pubmed/18184036 http://dx.doi.org/10.1371/journal.pbio.0060004 Text en © 2008 Zhu et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhu, Haisun Sauman, Ivo Yuan, Quan Casselman, Amy Emery-Le, Myai Emery, Patrick Reppert, Steven M Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation |
title | Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation |
title_full | Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation |
title_fullStr | Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation |
title_full_unstemmed | Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation |
title_short | Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation |
title_sort | cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174970/ https://www.ncbi.nlm.nih.gov/pubmed/18184036 http://dx.doi.org/10.1371/journal.pbio.0060004 |
work_keys_str_mv | AT zhuhaisun cryptochromesdefineanovelcircadianclockmechanisminmonarchbutterfliesthatmayunderliesuncompassnavigation AT saumanivo cryptochromesdefineanovelcircadianclockmechanisminmonarchbutterfliesthatmayunderliesuncompassnavigation AT yuanquan cryptochromesdefineanovelcircadianclockmechanisminmonarchbutterfliesthatmayunderliesuncompassnavigation AT casselmanamy cryptochromesdefineanovelcircadianclockmechanisminmonarchbutterfliesthatmayunderliesuncompassnavigation AT emerylemyai cryptochromesdefineanovelcircadianclockmechanisminmonarchbutterfliesthatmayunderliesuncompassnavigation AT emerypatrick cryptochromesdefineanovelcircadianclockmechanisminmonarchbutterfliesthatmayunderliesuncompassnavigation AT reppertstevenm cryptochromesdefineanovelcircadianclockmechanisminmonarchbutterfliesthatmayunderliesuncompassnavigation |