Cargando…
Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes
A multisubunit protein complex, termed cohesin, plays an essential role in sister chromatid cohesion in yeast and in Xenopus laevis cell-free extracts. We report here that two distinct cohesin complexes exist in Xenopus egg extracts. A 14S complex (x-cohesin(SA1)) contains XSMC1, XSMC3, XRAD21, and...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2000
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175199/ https://www.ncbi.nlm.nih.gov/pubmed/10931856 |
_version_ | 1782145434249068544 |
---|---|
author | Losada, Ana Yokochi, Tomoki Kobayashi, Ryuji Hirano, Tatsuya |
author_facet | Losada, Ana Yokochi, Tomoki Kobayashi, Ryuji Hirano, Tatsuya |
author_sort | Losada, Ana |
collection | PubMed |
description | A multisubunit protein complex, termed cohesin, plays an essential role in sister chromatid cohesion in yeast and in Xenopus laevis cell-free extracts. We report here that two distinct cohesin complexes exist in Xenopus egg extracts. A 14S complex (x-cohesin(SA1)) contains XSMC1, XSMC3, XRAD21, and a newly identified subunit, XSA1. In a second 12.5S complex (x-cohesin(SA2)), XSMC1, XSMC3, and XRAD21 associate with a different subunit, XSA2. Both XSA1 and XSA2 belong to the SA family of mammalian proteins and exhibit similarity to Scc3p, a recently identified component of yeast cohesin. In Xenopus egg extracts, x-cohesin(SA1) is predominant, whereas x-cohesin(SA2) constitutes only a very minor population. Human cells have a similar pair of cohesin complexes, but the SA2-type is the dominant form in somatic tissue culture cells. Immunolocalization experiments suggest that chromatin association of cohesin(SA1) and cohesin(SA2) may be differentially regulated. Dissociation of x-cohesin(SA1) from chromatin correlates with phosphorylation of XSA1 in the cell-free extracts. Purified cdc2-cyclin B can phosphorylate XSA1 in vitro and reduce the ability of x-cohesin(SA1) to bind to DNA or chromatin. These results shed light on the mechanism by which sister chromatid cohesion is partially dissolved in early mitosis, far before the onset of anaphase, in vertebrate cells. |
format | Text |
id | pubmed-2175199 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2000 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21751992008-05-01 Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes Losada, Ana Yokochi, Tomoki Kobayashi, Ryuji Hirano, Tatsuya J Cell Biol Original Article A multisubunit protein complex, termed cohesin, plays an essential role in sister chromatid cohesion in yeast and in Xenopus laevis cell-free extracts. We report here that two distinct cohesin complexes exist in Xenopus egg extracts. A 14S complex (x-cohesin(SA1)) contains XSMC1, XSMC3, XRAD21, and a newly identified subunit, XSA1. In a second 12.5S complex (x-cohesin(SA2)), XSMC1, XSMC3, and XRAD21 associate with a different subunit, XSA2. Both XSA1 and XSA2 belong to the SA family of mammalian proteins and exhibit similarity to Scc3p, a recently identified component of yeast cohesin. In Xenopus egg extracts, x-cohesin(SA1) is predominant, whereas x-cohesin(SA2) constitutes only a very minor population. Human cells have a similar pair of cohesin complexes, but the SA2-type is the dominant form in somatic tissue culture cells. Immunolocalization experiments suggest that chromatin association of cohesin(SA1) and cohesin(SA2) may be differentially regulated. Dissociation of x-cohesin(SA1) from chromatin correlates with phosphorylation of XSA1 in the cell-free extracts. Purified cdc2-cyclin B can phosphorylate XSA1 in vitro and reduce the ability of x-cohesin(SA1) to bind to DNA or chromatin. These results shed light on the mechanism by which sister chromatid cohesion is partially dissolved in early mitosis, far before the onset of anaphase, in vertebrate cells. The Rockefeller University Press 2000-08-07 /pmc/articles/PMC2175199/ /pubmed/10931856 Text en © 2000 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Original Article Losada, Ana Yokochi, Tomoki Kobayashi, Ryuji Hirano, Tatsuya Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes |
title | Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes |
title_full | Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes |
title_fullStr | Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes |
title_full_unstemmed | Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes |
title_short | Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes |
title_sort | identification and characterization of sa/scc3p subunits in the xenopus and human cohesin complexes |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175199/ https://www.ncbi.nlm.nih.gov/pubmed/10931856 |
work_keys_str_mv | AT losadaana identificationandcharacterizationofsascc3psubunitsinthexenopusandhumancohesincomplexes AT yokochitomoki identificationandcharacterizationofsascc3psubunitsinthexenopusandhumancohesincomplexes AT kobayashiryuji identificationandcharacterizationofsascc3psubunitsinthexenopusandhumancohesincomplexes AT hiranotatsuya identificationandcharacterizationofsascc3psubunitsinthexenopusandhumancohesincomplexes |