Cargando…

Extended CADLIVE: a novel graphical notation for design of biochemical network maps and computational pathway analysis

Biochemical network maps are helpful for understanding the mechanism of how a collection of biochemical reactions generate particular functions within a cell. We developed a new and computationally feasible notation that enables drawing a wide resolution map from the domain-level reactions to phenom...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurata, Hiroyuki, Inoue, Kentaro, Maeda, Kazuhiro, Masaki, Koichi, Shimokawa, Yuki, Zhao, Quanyu
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175333/
https://www.ncbi.nlm.nih.gov/pubmed/17940089
http://dx.doi.org/10.1093/nar/gkm769
Descripción
Sumario:Biochemical network maps are helpful for understanding the mechanism of how a collection of biochemical reactions generate particular functions within a cell. We developed a new and computationally feasible notation that enables drawing a wide resolution map from the domain-level reactions to phenomenological events and implemented it as the extended GUI network constructor of CADLIVE (Computer-Aided Design of LIVing systEms). The new notation presents ‘Domain expansion’ for proteins and RNAs, ‘Virtual reaction and nodes’ that are responsible for illustrating domain-based interaction and ‘InnerLink’ that links real complex nodes to virtual nodes to illustrate the exact components of the real complex. A modular box is also presented that packs related reactions as a module or a subnetwork, which gives CADLIVE a capability to draw biochemical maps in a hierarchical modular architecture. Furthermore, we developed a pathway search module for virtual knockout mutants as a built-in application of CADLIVE. This module analyzes gene function in the same way as molecular genetics, which simulates a change in mutant phenotypes or confirms the validity of the network map. The extended CADLIVE with the newly proposed notation is demonstrated to be feasible for computational simulation and analysis.