Cargando…

3′-Azido-2′,3′-dideoxynucleoside 5′-triphosphates inhibit telomerase activity in vitro, and the corresponding nucleosides cause telomere shortening in human HL60 cells

Telomerase adds telomeric DNA repeats to the ends of linear chromosomal DNA. 3′-Azido-3′-deoxythymidine 5′-triphosphate (AZTTP) is a known telomerase inhibitor. To obtain more selective and potent inhibitors that can be employed as tools for studying telomerase, we investigated the telomerase-inhibi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiaohong, Takahashi, Hazuki, Harada, Yoko, Ogawara, Tsukasa, Ogimura, Yuta, Mizushina, Yoshiyuku, Saneyoshi, Mineo, Yamaguchi, Toyofumi
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175342/
https://www.ncbi.nlm.nih.gov/pubmed/17942424
http://dx.doi.org/10.1093/nar/gkm859
Descripción
Sumario:Telomerase adds telomeric DNA repeats to the ends of linear chromosomal DNA. 3′-Azido-3′-deoxythymidine 5′-triphosphate (AZTTP) is a known telomerase inhibitor. To obtain more selective and potent inhibitors that can be employed as tools for studying telomerase, we investigated the telomerase-inhibitory effects of purine nucleosides bearing a 3′-down azido group: 3′-azido-2′,3′-dideoxyguanosine (AZddG) 5′-triphosphate (AZddGTP), 3′-azido-2′,3′-dideoxy-6-thioguanosine (AZddSG) 5′-triphosphate (AZddSGTP), 3′-azido-2′,3′-dideoxyadenosine (AZddA) 5′-triphosphate (AZddATP) and 3′-azido-2′,3′-dideoxy-2-aminoadenosine (AZddAA) 5′-triphosphate (AZddAATP). Of these, AZddGTP showed the most potent inhibitory activity against HeLa cell telomerase. AZddGTP was significantly incorporated into the 3′-terminus of DNA by partially purified telomerase. However, AZddGTP did not exhibit significant inhibitory activity against DNA polymerases α and δ, suggesting that AZddGTP is a selective inhibitor of telomerase. We also investigated whether long-term treatment with these nucleosides could alter telomere length and growth rates of human HL60 cells in culture. Southern hybridization analysis of genomic DNA prepared from cells cultured in the presence of AZddG and AZddAA revealed reproducible telomere shortening.