Cargando…

AN ULTRASTRUCTURAL STUDY OF GLOMERULAR PERMEABILITY USING CATALASE AND PEROXIDASE AS TRACER PROTEINS

Mice were injected intravenously with beef liver catalase (mol wt 240,000) and very small doses of horseradish peroxidase (mol wt 40,000) and the site of localization of these enzymes in the kidney was studied by ultrastructural cytochemistry. 1 min after injection, catalase was present in glomerula...

Descripción completa

Detalles Bibliográficos
Autores principales: Venkatachalam, M. A., Karnovsky, M. J., Fahimi, H. D., Cotran, R. S.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1970
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2180510/
https://www.ncbi.nlm.nih.gov/pubmed/5511568
Descripción
Sumario:Mice were injected intravenously with beef liver catalase (mol wt 240,000) and very small doses of horseradish peroxidase (mol wt 40,000) and the site of localization of these enzymes in the kidney was studied by ultrastructural cytochemistry. 1 min after injection, catalase was present in glomerular capillary lumina and there was minimal permeation of the basement membrane. After 5–180 min, staining of the basement membrane increased progressively but was usually less than that in capillary lumina. At all time intervals the inner (sub-endothelial) layer of the basement membrane contained more reaction product than the lamina densa and the outer (subepithelial) layer. Catalase permeated the entire thickness of the basement membrane and extended up to the slit pore but not beyond the level of the slit diaphragm and was not seen in the urinary space or tubular lumina. Horseradish peroxidase permeated the whole thickness of the basement membrane within 2 min after injection; however, gradients of staining from the inner to outer layers of the basement membrane were frequently seen. The findings with both enzymes indicate that (a) the basement membrane restricts the passage of proteins over a wide range of molecular size with increasing impediment for larger molecules and (b) the slit pore functions as an additional barrier for molecules that cross the basement membrane.