Cargando…

THE RELATIONSHIP OF THE CHEMOTACTIC BEHAVIOR OF THE COMPLEMENT-DERIVED FACTORS, C3a, C5a, AND C567, AND A BACTERIAL CHEMOTACTIC FACTOR TO THEIR ABILITY TO ACTIVATE THE PROESTERASE 1 OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES

The inhibition profiles obtained when a series of p-nitrophenyl ethyl alkylphosphonates and of p-nitrophenyl ethyl chloroalkylphosphonates were used to interfere with the chemotactic activity of polymorphonuclear leukocytes stimulated by C3a, C5a, and bacterial factor were the same as found previous...

Descripción completa

Detalles Bibliográficos
Autor principal: Becker, Elmer L.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1972
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2180516/
https://www.ncbi.nlm.nih.gov/pubmed/4551218
_version_ 1782145564639494144
author Becker, Elmer L.
author_facet Becker, Elmer L.
author_sort Becker, Elmer L.
collection PubMed
description The inhibition profiles obtained when a series of p-nitrophenyl ethyl alkylphosphonates and of p-nitrophenyl ethyl chloroalkylphosphonates were used to interfere with the chemotactic activity of polymorphonuclear leukocytes stimulated by C3a, C5a, and bacterial factor were the same as found previously when C567 was the chemotactic agent. This indicates that as in the chemotactic activity induced by C567, an obligatory step in the chemotaxis caused by C3a, C5a, and bacterial factor is the activation of proesterase 1 of the rabbit polymorphonuclear leukocyte. C5a and C3a activate proesterase 1 of peripheral blood polymophonuclear leukocytes as measured by the increase of acetyl DL-phenylalanine β-naphthyl esterase activity. Attempts to detect in a like manner the proesterase 1 of the same leukocytes using bacterial factor under varying circumstances have consistently failed. It is concluded that bacterial factor, for unknown reasons, is unable to activate proesterase 1 to the same extent as the complement-derived chemotactic factors. The hypothesis of there being a quantitative difference in the ability of bacterial factor to activate proesterase 1 compared with the complement-derived factors explains the previous observations that bacterial factor can not deactivate to itself or to the complement-derived factors, although these latter factors can deactivate to themselves, to each other, and to the bacterial factor. The quantitative difference in the ability of bacterial factor to activate proesterase 1 compared to the complement-derived factors is also associated with and explains the finding that the maximal chemotactic activity attainable when bacterial factor is the chemotactic agent is distinctly less than that obtained using either C3a, C5a, or C567. These results indicate that the activation of proesterase 1 is a general requirement for the chemotactic activity of rabbit polymorphonuclear leukocytes with known macromolecular chemotactic agents and suggest that under several different circumstances the level of chemotactic activity attained is related to the degree of such activation.
format Text
id pubmed-2180516
institution National Center for Biotechnology Information
language English
publishDate 1972
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21805162008-04-17 THE RELATIONSHIP OF THE CHEMOTACTIC BEHAVIOR OF THE COMPLEMENT-DERIVED FACTORS, C3a, C5a, AND C567, AND A BACTERIAL CHEMOTACTIC FACTOR TO THEIR ABILITY TO ACTIVATE THE PROESTERASE 1 OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES Becker, Elmer L. J Exp Med Article The inhibition profiles obtained when a series of p-nitrophenyl ethyl alkylphosphonates and of p-nitrophenyl ethyl chloroalkylphosphonates were used to interfere with the chemotactic activity of polymorphonuclear leukocytes stimulated by C3a, C5a, and bacterial factor were the same as found previously when C567 was the chemotactic agent. This indicates that as in the chemotactic activity induced by C567, an obligatory step in the chemotaxis caused by C3a, C5a, and bacterial factor is the activation of proesterase 1 of the rabbit polymorphonuclear leukocyte. C5a and C3a activate proesterase 1 of peripheral blood polymophonuclear leukocytes as measured by the increase of acetyl DL-phenylalanine β-naphthyl esterase activity. Attempts to detect in a like manner the proesterase 1 of the same leukocytes using bacterial factor under varying circumstances have consistently failed. It is concluded that bacterial factor, for unknown reasons, is unable to activate proesterase 1 to the same extent as the complement-derived chemotactic factors. The hypothesis of there being a quantitative difference in the ability of bacterial factor to activate proesterase 1 compared with the complement-derived factors explains the previous observations that bacterial factor can not deactivate to itself or to the complement-derived factors, although these latter factors can deactivate to themselves, to each other, and to the bacterial factor. The quantitative difference in the ability of bacterial factor to activate proesterase 1 compared to the complement-derived factors is also associated with and explains the finding that the maximal chemotactic activity attainable when bacterial factor is the chemotactic agent is distinctly less than that obtained using either C3a, C5a, or C567. These results indicate that the activation of proesterase 1 is a general requirement for the chemotactic activity of rabbit polymorphonuclear leukocytes with known macromolecular chemotactic agents and suggest that under several different circumstances the level of chemotactic activity attained is related to the degree of such activation. The Rockefeller University Press 1972-01-31 /pmc/articles/PMC2180516/ /pubmed/4551218 Text en Copyright © 1972 by The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Becker, Elmer L.
THE RELATIONSHIP OF THE CHEMOTACTIC BEHAVIOR OF THE COMPLEMENT-DERIVED FACTORS, C3a, C5a, AND C567, AND A BACTERIAL CHEMOTACTIC FACTOR TO THEIR ABILITY TO ACTIVATE THE PROESTERASE 1 OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES
title THE RELATIONSHIP OF THE CHEMOTACTIC BEHAVIOR OF THE COMPLEMENT-DERIVED FACTORS, C3a, C5a, AND C567, AND A BACTERIAL CHEMOTACTIC FACTOR TO THEIR ABILITY TO ACTIVATE THE PROESTERASE 1 OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES
title_full THE RELATIONSHIP OF THE CHEMOTACTIC BEHAVIOR OF THE COMPLEMENT-DERIVED FACTORS, C3a, C5a, AND C567, AND A BACTERIAL CHEMOTACTIC FACTOR TO THEIR ABILITY TO ACTIVATE THE PROESTERASE 1 OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES
title_fullStr THE RELATIONSHIP OF THE CHEMOTACTIC BEHAVIOR OF THE COMPLEMENT-DERIVED FACTORS, C3a, C5a, AND C567, AND A BACTERIAL CHEMOTACTIC FACTOR TO THEIR ABILITY TO ACTIVATE THE PROESTERASE 1 OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES
title_full_unstemmed THE RELATIONSHIP OF THE CHEMOTACTIC BEHAVIOR OF THE COMPLEMENT-DERIVED FACTORS, C3a, C5a, AND C567, AND A BACTERIAL CHEMOTACTIC FACTOR TO THEIR ABILITY TO ACTIVATE THE PROESTERASE 1 OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES
title_short THE RELATIONSHIP OF THE CHEMOTACTIC BEHAVIOR OF THE COMPLEMENT-DERIVED FACTORS, C3a, C5a, AND C567, AND A BACTERIAL CHEMOTACTIC FACTOR TO THEIR ABILITY TO ACTIVATE THE PROESTERASE 1 OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES
title_sort relationship of the chemotactic behavior of the complement-derived factors, c3a, c5a, and c567, and a bacterial chemotactic factor to their ability to activate the proesterase 1 of rabbit polymorphonuclear leukocytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2180516/
https://www.ncbi.nlm.nih.gov/pubmed/4551218
work_keys_str_mv AT beckerelmerl therelationshipofthechemotacticbehaviorofthecomplementderivedfactorsc3ac5aandc567andabacterialchemotacticfactortotheirabilitytoactivatetheproesterase1ofrabbitpolymorphonuclearleukocytes
AT beckerelmerl relationshipofthechemotacticbehaviorofthecomplementderivedfactorsc3ac5aandc567andabacterialchemotacticfactortotheirabilitytoactivatetheproesterase1ofrabbitpolymorphonuclearleukocytes