Cargando…

STUDIES ON THYMUS FUNCTION : III. DURATION OF THYMIC FUNCTION

The immune functions of neonatally thymectomized C3Hf mice exposed only temporarily to thymus function show a progressive decay with time in the absence of the thymus. The immune responses studied at different ages in the range of 100–600 days were: first-set rejection of H-2-compatible and incompat...

Descripción completa

Detalles Bibliográficos
Autores principales: Stutman, Osias, Yunis, Edmond J., Good, Robert A.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1972
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2180524/
https://www.ncbi.nlm.nih.gov/pubmed/4400698
_version_ 1782145566535319552
author Stutman, Osias
Yunis, Edmond J.
Good, Robert A.
author_facet Stutman, Osias
Yunis, Edmond J.
Good, Robert A.
author_sort Stutman, Osias
collection PubMed
description The immune functions of neonatally thymectomized C3Hf mice exposed only temporarily to thymus function show a progressive decay with time in the absence of the thymus. The immune responses studied at different ages in the range of 100–600 days were: first-set rejection of H-2-compatible and incompatible skin allografts, second-set rejection of skin allografts, capacity of spleen cells to produce graft-versus-host reactions in F(1) hybrids, resistance to infection with mouse hepatitis virus, and response of spleen cells to phytohemagglutinin in vitro. These long-term studies had the purpose of determining the duration of the restoration induced by thymus function when the mice were exposed only temporarily to it. Different models were used but the two basic ones were: (a) mice grafted intraperitoneally at 15 days of age with a syngeneic thymus that was removed surgically at 10, 20, or 30 days after grafting, and (b) mice grafted at 15 days of age with allogeneic strain A thymoma or C57BL thymus, these representing situations in which there is spontaneous rejection of the restoring graft. In all the experimental models used, the animals were restored when tested at 100 days of age, but progressively became immunologically incapacitated at 200–300 days of age. From the more controlled experiments in which the restoring thymus graft was removed surgically, the following conclusions can be drawn. (a) A short exposure to a thymus graft can produce restoration of immune functions in neonatally thymectomized mice, but this restoration is not self-sustaining in the absence of the thymus and declines progressively with age. The decline usually starts at 200–300 days of age. (b) This was especially clear in experiments in which the same animal was tested twice in its lifetime for capacity to produce graft-versus-host reactions; these animals were competent at 100 days and became incompetent at 400 days of age. (c) The shortest period of thymic exposure studied was 10 days; if vascularization of the graft is taken into account, 2–3 days of thymic function are sufficient to produce restoration. (d) The immune decay observed in the thymectomized animals exposed temporarily to thymus was more profound than the physiological decay of immunity observed in control animals of similar age. (e) Of all the tests studied, the response of spleen cells to phytohemagglutinin was to be preserved the longest in animals exposed only temporarily to thymic function. The present results were interpreted in accordance with our previous findings indicating that a population of postthymic cells can be developed by temporary exposure of neonatally thymectomized animals to thymic function, but that this population is not self-sustaining in the absence of thymus and progressively decays by physiological attrition.
format Text
id pubmed-2180524
institution National Center for Biotechnology Information
language English
publishDate 1972
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21805242008-04-17 STUDIES ON THYMUS FUNCTION : III. DURATION OF THYMIC FUNCTION Stutman, Osias Yunis, Edmond J. Good, Robert A. J Exp Med Article The immune functions of neonatally thymectomized C3Hf mice exposed only temporarily to thymus function show a progressive decay with time in the absence of the thymus. The immune responses studied at different ages in the range of 100–600 days were: first-set rejection of H-2-compatible and incompatible skin allografts, second-set rejection of skin allografts, capacity of spleen cells to produce graft-versus-host reactions in F(1) hybrids, resistance to infection with mouse hepatitis virus, and response of spleen cells to phytohemagglutinin in vitro. These long-term studies had the purpose of determining the duration of the restoration induced by thymus function when the mice were exposed only temporarily to it. Different models were used but the two basic ones were: (a) mice grafted intraperitoneally at 15 days of age with a syngeneic thymus that was removed surgically at 10, 20, or 30 days after grafting, and (b) mice grafted at 15 days of age with allogeneic strain A thymoma or C57BL thymus, these representing situations in which there is spontaneous rejection of the restoring graft. In all the experimental models used, the animals were restored when tested at 100 days of age, but progressively became immunologically incapacitated at 200–300 days of age. From the more controlled experiments in which the restoring thymus graft was removed surgically, the following conclusions can be drawn. (a) A short exposure to a thymus graft can produce restoration of immune functions in neonatally thymectomized mice, but this restoration is not self-sustaining in the absence of the thymus and declines progressively with age. The decline usually starts at 200–300 days of age. (b) This was especially clear in experiments in which the same animal was tested twice in its lifetime for capacity to produce graft-versus-host reactions; these animals were competent at 100 days and became incompetent at 400 days of age. (c) The shortest period of thymic exposure studied was 10 days; if vascularization of the graft is taken into account, 2–3 days of thymic function are sufficient to produce restoration. (d) The immune decay observed in the thymectomized animals exposed temporarily to thymus was more profound than the physiological decay of immunity observed in control animals of similar age. (e) Of all the tests studied, the response of spleen cells to phytohemagglutinin was to be preserved the longest in animals exposed only temporarily to thymic function. The present results were interpreted in accordance with our previous findings indicating that a population of postthymic cells can be developed by temporary exposure of neonatally thymectomized animals to thymic function, but that this population is not self-sustaining in the absence of thymus and progressively decays by physiological attrition. The Rockefeller University Press 1972-01-31 /pmc/articles/PMC2180524/ /pubmed/4400698 Text en Copyright © 1972 by The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Stutman, Osias
Yunis, Edmond J.
Good, Robert A.
STUDIES ON THYMUS FUNCTION : III. DURATION OF THYMIC FUNCTION
title STUDIES ON THYMUS FUNCTION : III. DURATION OF THYMIC FUNCTION
title_full STUDIES ON THYMUS FUNCTION : III. DURATION OF THYMIC FUNCTION
title_fullStr STUDIES ON THYMUS FUNCTION : III. DURATION OF THYMIC FUNCTION
title_full_unstemmed STUDIES ON THYMUS FUNCTION : III. DURATION OF THYMIC FUNCTION
title_short STUDIES ON THYMUS FUNCTION : III. DURATION OF THYMIC FUNCTION
title_sort studies on thymus function : iii. duration of thymic function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2180524/
https://www.ncbi.nlm.nih.gov/pubmed/4400698
work_keys_str_mv AT stutmanosias studiesonthymusfunctioniiidurationofthymicfunction
AT yunisedmondj studiesonthymusfunctioniiidurationofthymicfunction
AT goodroberta studiesonthymusfunctioniiidurationofthymicfunction