Cargando…

Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma

As background for a serological definition of the unique antigens of chemically induced sarcomas, we have typed a series of fibroblast and sarcoma cell lines of BALB/c and C57BL/6 origin by cytoxicity and absorption tests for murine leukemia virus (MuLV)-related cell surface antigens and known alloa...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1977
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2180799/
https://www.ncbi.nlm.nih.gov/pubmed/197192
_version_ 1782145631495651328
collection PubMed
description As background for a serological definition of the unique antigens of chemically induced sarcomas, we have typed a series of fibroblast and sarcoma cell lines of BALB/c and C57BL/6 origin by cytoxicity and absorption tests for murine leukemia virus (MuLV)-related cell surface antigens and known alloantigens. 7 of the 17 cultured lines expressed the range of cell surface antigens associated with MuLV (GIX, GCSA, gp70, p30), and this was invariably associated with MuLV production. In nonproducer lines of C57BL/6 (but not BALB/c) origin, a MuLV-gp70-like molecule was found on the surface of fibroblasts and sarcoma cells. The alloantigenic phenotype of these MuLV+ and MuLV- cell lines was H-2D+, H-2K+, Thy-1.2+ or -, PC.1+ or -, Lyt-1.2-, Lyt-2.2-, Ia.7-, and TL.2-. A unique antigen was defined on the BALB/c ascites sarcoma Meth A with antisera prepared in BALB/c or (BALB/c X C57BL/6)F1 mice. Tissue culture lines derived from this tumor were MuLV-, which facilitated serological study of the antigen. Absorption analysis indicated that the antigen was restricted to Meth A; it could not be detected in normal or fetal BALB/c tissue MuLV+ or MuLV- fibroblast lines, 12 syngeneic or allogeneic sarcomas, or normal lymphoid cells from 13 different inbred mouse strains.
format Text
id pubmed-2180799
institution National Center for Biotechnology Information
language English
publishDate 1977
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21807992008-04-17 Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma J Exp Med Articles As background for a serological definition of the unique antigens of chemically induced sarcomas, we have typed a series of fibroblast and sarcoma cell lines of BALB/c and C57BL/6 origin by cytoxicity and absorption tests for murine leukemia virus (MuLV)-related cell surface antigens and known alloantigens. 7 of the 17 cultured lines expressed the range of cell surface antigens associated with MuLV (GIX, GCSA, gp70, p30), and this was invariably associated with MuLV production. In nonproducer lines of C57BL/6 (but not BALB/c) origin, a MuLV-gp70-like molecule was found on the surface of fibroblasts and sarcoma cells. The alloantigenic phenotype of these MuLV+ and MuLV- cell lines was H-2D+, H-2K+, Thy-1.2+ or -, PC.1+ or -, Lyt-1.2-, Lyt-2.2-, Ia.7-, and TL.2-. A unique antigen was defined on the BALB/c ascites sarcoma Meth A with antisera prepared in BALB/c or (BALB/c X C57BL/6)F1 mice. Tissue culture lines derived from this tumor were MuLV-, which facilitated serological study of the antigen. Absorption analysis indicated that the antigen was restricted to Meth A; it could not be detected in normal or fetal BALB/c tissue MuLV+ or MuLV- fibroblast lines, 12 syngeneic or allogeneic sarcomas, or normal lymphoid cells from 13 different inbred mouse strains. The Rockefeller University Press 1977-09-01 /pmc/articles/PMC2180799/ /pubmed/197192 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma
title Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma
title_full Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma
title_fullStr Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma
title_full_unstemmed Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma
title_short Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma
title_sort cell surface antigens of chemically induced sarcomas of the mouse. i. murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on balb/c meth a sarcoma
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2180799/
https://www.ncbi.nlm.nih.gov/pubmed/197192