Cargando…

Genetic control of endotoxic responses in mice

A number of altered immunologic responses to lipopolysaccharide (LPS) in C3H/HeJ mice result from the expression in B lymphocytes of a defective genetic locus, termed Lps. Lps has been mapped to chromosome 4 between two loci, Mup-1 and Ps. As it is difficult to type individual mice for LPS responsiv...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2184109/
https://www.ncbi.nlm.nih.gov/pubmed/342667
_version_ 1782145657642942464
collection PubMed
description A number of altered immunologic responses to lipopolysaccharide (LPS) in C3H/HeJ mice result from the expression in B lymphocytes of a defective genetic locus, termed Lps. Lps has been mapped to chromosome 4 between two loci, Mup-1 and Ps. As it is difficult to type individual mice for LPS responsiveness in more than one type of assay, we have utilized Mup-1 as a genetic marker to correlate LPS responses in mice to the expression of the Lps locus. Three nonlymphoid responses to LPS have been examined in 12 recombinant inbred strains of mice and in a backcross linkage analysis, and are all regulated by the expression of the Lps locus. These responses are hypothermal changes in body temperature, and the elevation in serum levels of a colony stimulating factor and the precursor of the secondary amyloid protein AA. Therefore, the initiation of LPS responses in different cell types in mice involve the expression of a common locus. These linkage studies provide a means for analyzing the genetic control of many of the diverse reactions of the endotoxic response to LPS.
format Text
id pubmed-2184109
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21841092008-04-17 Genetic control of endotoxic responses in mice J Exp Med Articles A number of altered immunologic responses to lipopolysaccharide (LPS) in C3H/HeJ mice result from the expression in B lymphocytes of a defective genetic locus, termed Lps. Lps has been mapped to chromosome 4 between two loci, Mup-1 and Ps. As it is difficult to type individual mice for LPS responsiveness in more than one type of assay, we have utilized Mup-1 as a genetic marker to correlate LPS responses in mice to the expression of the Lps locus. Three nonlymphoid responses to LPS have been examined in 12 recombinant inbred strains of mice and in a backcross linkage analysis, and are all regulated by the expression of the Lps locus. These responses are hypothermal changes in body temperature, and the elevation in serum levels of a colony stimulating factor and the precursor of the secondary amyloid protein AA. Therefore, the initiation of LPS responses in different cell types in mice involve the expression of a common locus. These linkage studies provide a means for analyzing the genetic control of many of the diverse reactions of the endotoxic response to LPS. The Rockefeller University Press 1978-01-01 /pmc/articles/PMC2184109/ /pubmed/342667 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Genetic control of endotoxic responses in mice
title Genetic control of endotoxic responses in mice
title_full Genetic control of endotoxic responses in mice
title_fullStr Genetic control of endotoxic responses in mice
title_full_unstemmed Genetic control of endotoxic responses in mice
title_short Genetic control of endotoxic responses in mice
title_sort genetic control of endotoxic responses in mice
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2184109/
https://www.ncbi.nlm.nih.gov/pubmed/342667