Cargando…

Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro

Human mononuclear leukocytes were fractionated into populations of null, T and B cells by immunoabsorbent column chromatography followed by E-rosette formation and purification of T cells by differential centrifugation and osmotic lysis. The unfractionated and fractionated cell populations were firs...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1978
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2184491/
https://www.ncbi.nlm.nih.gov/pubmed/304881
_version_ 1782145684114243584
collection PubMed
description Human mononuclear leukocytes were fractionated into populations of null, T and B cells by immunoabsorbent column chromatography followed by E-rosette formation and purification of T cells by differential centrifugation and osmotic lysis. The unfractionated and fractionated cell populations were first separately cultured for 14 days in plasma clots in the presence of two international units erythropoietin. Typical erythroid burst-forming unit (BFU-E)-derived colonies grew in the unfractionated cell cultures but not from T- or B-cell cultures. BFU-E colonies grew in null cell cultures but most of the colonies were small and variably hemoglobinized with less than three subcolonies. When intact T cells were added to null cells and cocultured, many typical large BFU-E colonies with more than 10 well homogenized subcolonies appeared. Increasing numbers of large BFU-E colonies in null cell cultures were induced by stepwise addition of T cells but not by the addition of B cells. A conditioned medium in which T cells had been induced to divide by tetanus toxoid substituted for intact T cells in this T-cell-dependent BFU-E colony formation observed in null cells. These findings demonstrate that the BFU-E, a committeded erythroid stem cell, resides in the null cell fraction of peripheral blood, but its proliferative capacity and differentiation in vitro requires a soluble product of T cells. Such experiments now permit a new approach to the assessment of various disorders of erythropoiesis. Erythroid hypoplasia in a particular case may be due to dysfunction of the committed precursor cell or to a failure of a helper effect induced by T cells.
format Text
id pubmed-2184491
institution National Center for Biotechnology Information
language English
publishDate 1978
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21844912008-04-17 Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro J Exp Med Articles Human mononuclear leukocytes were fractionated into populations of null, T and B cells by immunoabsorbent column chromatography followed by E-rosette formation and purification of T cells by differential centrifugation and osmotic lysis. The unfractionated and fractionated cell populations were first separately cultured for 14 days in plasma clots in the presence of two international units erythropoietin. Typical erythroid burst-forming unit (BFU-E)-derived colonies grew in the unfractionated cell cultures but not from T- or B-cell cultures. BFU-E colonies grew in null cell cultures but most of the colonies were small and variably hemoglobinized with less than three subcolonies. When intact T cells were added to null cells and cocultured, many typical large BFU-E colonies with more than 10 well homogenized subcolonies appeared. Increasing numbers of large BFU-E colonies in null cell cultures were induced by stepwise addition of T cells but not by the addition of B cells. A conditioned medium in which T cells had been induced to divide by tetanus toxoid substituted for intact T cells in this T-cell-dependent BFU-E colony formation observed in null cells. These findings demonstrate that the BFU-E, a committeded erythroid stem cell, resides in the null cell fraction of peripheral blood, but its proliferative capacity and differentiation in vitro requires a soluble product of T cells. Such experiments now permit a new approach to the assessment of various disorders of erythropoiesis. Erythroid hypoplasia in a particular case may be due to dysfunction of the committed precursor cell or to a failure of a helper effect induced by T cells. The Rockefeller University Press 1978-02-01 /pmc/articles/PMC2184491/ /pubmed/304881 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro
title Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro
title_full Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro
title_fullStr Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro
title_full_unstemmed Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro
title_short Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro
title_sort human erythroid burst-forming unit: t-cell requirement for proliferation in vitro
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2184491/
https://www.ncbi.nlm.nih.gov/pubmed/304881