Cargando…
Role of phagocytosis in the activation of macrophages
Macrophages were obtained by peritoneal lavage from untreated mice or from mice which had received either Brewer's thioglycollate broth or a suspension of streptococcus A cell walls intraperitoneally 4 days before. 3 h after harvesting, adherent cells from untreated mice were allowed to phagocy...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1978
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185103/ https://www.ncbi.nlm.nih.gov/pubmed/722242 |
_version_ | 1782145755669069824 |
---|---|
author | Schnyder, J Baggiolini, M |
author_facet | Schnyder, J Baggiolini, M |
author_sort | Schnyder, J |
collection | PubMed |
description | Macrophages were obtained by peritoneal lavage from untreated mice or from mice which had received either Brewer's thioglycollate broth or a suspension of streptococcus A cell walls intraperitoneally 4 days before. 3 h after harvesting, adherent cells from untreated mice were allowed to phagocytose zymosan, formaldehyde-treated sheep erythrocytes, or latex beads. Phagocytosis was stopped after 1 h and culture was continued for up to 10 days. Phagocytosis of zymosan or sheep erythrocytes triggered the immediate release of lysosomal glycosidases, stimulated the synthesis of cellular lactate dehydrogenase, and induced the delayed production and secretion of plasminogen activator . No such changes were observed upon phagocytosis of latex. Although all three particles used were phagocytosed, only zymosan and sheep erythrocytes stimulated glucose oxidation via the hexose monophosphate shunt. Similar findings were obtained in macrophages elicited with streptococcus A cell walls after zymosan phagocytosis. Thioglycollate-elicited macrophages, however, which were already secreting lysosomal hydrolases and plasminogen activator, could not be activated further by zymosan. The results of this study show that macrophages become activated after phagocytosis of particles that stimulate the activity of their hexose monophosphate shunt. The triggering event appears to be the burst of shunt activity itself or shunt-related biochemical reactions rather than phagocytic uptake per se or particle-dependent complement activation by the alternative pathway. Once initiated, macrophage activation proceeds independently of the intracellular fate of the ingested material . |
format | Text |
id | pubmed-2185103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1978 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21851032008-04-17 Role of phagocytosis in the activation of macrophages Schnyder, J Baggiolini, M J Exp Med Articles Macrophages were obtained by peritoneal lavage from untreated mice or from mice which had received either Brewer's thioglycollate broth or a suspension of streptococcus A cell walls intraperitoneally 4 days before. 3 h after harvesting, adherent cells from untreated mice were allowed to phagocytose zymosan, formaldehyde-treated sheep erythrocytes, or latex beads. Phagocytosis was stopped after 1 h and culture was continued for up to 10 days. Phagocytosis of zymosan or sheep erythrocytes triggered the immediate release of lysosomal glycosidases, stimulated the synthesis of cellular lactate dehydrogenase, and induced the delayed production and secretion of plasminogen activator . No such changes were observed upon phagocytosis of latex. Although all three particles used were phagocytosed, only zymosan and sheep erythrocytes stimulated glucose oxidation via the hexose monophosphate shunt. Similar findings were obtained in macrophages elicited with streptococcus A cell walls after zymosan phagocytosis. Thioglycollate-elicited macrophages, however, which were already secreting lysosomal hydrolases and plasminogen activator, could not be activated further by zymosan. The results of this study show that macrophages become activated after phagocytosis of particles that stimulate the activity of their hexose monophosphate shunt. The triggering event appears to be the burst of shunt activity itself or shunt-related biochemical reactions rather than phagocytic uptake per se or particle-dependent complement activation by the alternative pathway. Once initiated, macrophage activation proceeds independently of the intracellular fate of the ingested material . The Rockefeller University Press 1978-12-01 /pmc/articles/PMC2185103/ /pubmed/722242 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Schnyder, J Baggiolini, M Role of phagocytosis in the activation of macrophages |
title | Role of phagocytosis in the activation of macrophages |
title_full | Role of phagocytosis in the activation of macrophages |
title_fullStr | Role of phagocytosis in the activation of macrophages |
title_full_unstemmed | Role of phagocytosis in the activation of macrophages |
title_short | Role of phagocytosis in the activation of macrophages |
title_sort | role of phagocytosis in the activation of macrophages |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185103/ https://www.ncbi.nlm.nih.gov/pubmed/722242 |
work_keys_str_mv | AT schnyderj roleofphagocytosisintheactivationofmacrophages AT baggiolinim roleofphagocytosisintheactivationofmacrophages |