Cargando…
Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells
Natural killer (NK) cells from nonimmunized mice capable of lysing EL-4 (C57BL/6 strain H-2b) tissue culture-adapted lymphoma cells have been analyzed and compared with NK cells which lyse YAC-1 (A-strain, H-2a) lymphoma cells. A correlation was seen in the ability of inbred and B6D2F1 mice to rejec...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1979
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185646/ https://www.ncbi.nlm.nih.gov/pubmed/383877 |
_version_ | 1782145788715991040 |
---|---|
collection | PubMed |
description | Natural killer (NK) cells from nonimmunized mice capable of lysing EL-4 (C57BL/6 strain H-2b) tissue culture-adapted lymphoma cells have been analyzed and compared with NK cells which lyse YAC-1 (A-strain, H-2a) lymphoma cells. A correlation was seen in the ability of inbred and B6D2F1 mice to reject C57BL/6 (B6) bone-marrow grafts and the ability of their spleen cells to lyse EL-4 cells in vitro. This suggests that hybrid or hemopoietic histocompatibility antigens, (Hh-1b), relevant in the rejection of B6 stem cells may also be the relevant target structures for the anti-EL-4 NK cells. Certain features of these NK cells are similar to the NK cells reactive against YAC-1 cells. Both types of NK cells are present in athymic nude mice, are not affected by treatment with anti-immunoglobulin plus complement, and are not depleted by techniques that remove macrophages. NK activity against both targets is stimulated 3 d after injection of Corynebacterium parvum, and 24 h after challenge with polyinosinic:polycytidylic acid. Hydrocortisone acetate and cyclophosphamide lead to reduction of NK activity within 2-3 d after administration. However, the anti-YAC and anti-EL-4 NK reactivities differed in several important respects. Treatment of mice with 89Sr, the bone-seeking isotope, to deplete marrow-dependent cells, depleted the anti-YAC-1 but not anti-EL-4 cell functions. Anti-EL-4 NK cells were unaffected by silica particles in vivo or in vitro; the NK cells reactive to EL-4 cells matured functionally much earlier in life (5 d of age) and the function did not decline with age. Irradiated mice reconstituted with syngeneic marrow or spleen cells developed functional NK cells against EL-4 targets before they developed anti-YAC-1 NK cells in their spleen. Thus anti-EL- 4 NK cells that express hybrid resistance in vitro appear to differ from anti-YAC-1 NK cells and do not require an intact marrow microenvironment for functional differentiation. Despite differences in the NK-cell types involved in the lysis of YAC-1 and EL-4 cells, these two tumor cells share certain common determinants. This was ascertained both by cold competition and by utilization of YAC-1 and EL-4 cell monolayers as immunoadsorbents. We conclude that Hh-1b is the common antigen present in EL-4 and YAC-1 cells, because B6D2F1 anti-B6 (anti- Hh-1b) cytotoxic T lymphocytes lysed both the tumor cells. Our data suggest that Hh-1b antigen is recognized by both types of NK cells, but that additional determinants must be present on YAC-1 cells. Two models of NK cell lysis compatible with the data are presented. |
format | Text |
id | pubmed-2185646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1979 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21856462008-04-17 Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells J Exp Med Articles Natural killer (NK) cells from nonimmunized mice capable of lysing EL-4 (C57BL/6 strain H-2b) tissue culture-adapted lymphoma cells have been analyzed and compared with NK cells which lyse YAC-1 (A-strain, H-2a) lymphoma cells. A correlation was seen in the ability of inbred and B6D2F1 mice to reject C57BL/6 (B6) bone-marrow grafts and the ability of their spleen cells to lyse EL-4 cells in vitro. This suggests that hybrid or hemopoietic histocompatibility antigens, (Hh-1b), relevant in the rejection of B6 stem cells may also be the relevant target structures for the anti-EL-4 NK cells. Certain features of these NK cells are similar to the NK cells reactive against YAC-1 cells. Both types of NK cells are present in athymic nude mice, are not affected by treatment with anti-immunoglobulin plus complement, and are not depleted by techniques that remove macrophages. NK activity against both targets is stimulated 3 d after injection of Corynebacterium parvum, and 24 h after challenge with polyinosinic:polycytidylic acid. Hydrocortisone acetate and cyclophosphamide lead to reduction of NK activity within 2-3 d after administration. However, the anti-YAC and anti-EL-4 NK reactivities differed in several important respects. Treatment of mice with 89Sr, the bone-seeking isotope, to deplete marrow-dependent cells, depleted the anti-YAC-1 but not anti-EL-4 cell functions. Anti-EL-4 NK cells were unaffected by silica particles in vivo or in vitro; the NK cells reactive to EL-4 cells matured functionally much earlier in life (5 d of age) and the function did not decline with age. Irradiated mice reconstituted with syngeneic marrow or spleen cells developed functional NK cells against EL-4 targets before they developed anti-YAC-1 NK cells in their spleen. Thus anti-EL- 4 NK cells that express hybrid resistance in vitro appear to differ from anti-YAC-1 NK cells and do not require an intact marrow microenvironment for functional differentiation. Despite differences in the NK-cell types involved in the lysis of YAC-1 and EL-4 cells, these two tumor cells share certain common determinants. This was ascertained both by cold competition and by utilization of YAC-1 and EL-4 cell monolayers as immunoadsorbents. We conclude that Hh-1b is the common antigen present in EL-4 and YAC-1 cells, because B6D2F1 anti-B6 (anti- Hh-1b) cytotoxic T lymphocytes lysed both the tumor cells. Our data suggest that Hh-1b antigen is recognized by both types of NK cells, but that additional determinants must be present on YAC-1 cells. Two models of NK cell lysis compatible with the data are presented. The Rockefeller University Press 1979-09-19 /pmc/articles/PMC2185646/ /pubmed/383877 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells |
title | Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells |
title_full | Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells |
title_fullStr | Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells |
title_full_unstemmed | Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells |
title_short | Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells |
title_sort | hybrid resistance to el-4 lymphoma cells. i. characterization of natural killer cells that lyse el-4 cells and their distinction from marrow-dependent natural killer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185646/ https://www.ncbi.nlm.nih.gov/pubmed/383877 |