Cargando…

Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates

A sensitive method for evaluating extracellular parasite viability was used to determine the in vitro susceptibility of virulent Toxoplasma gondii to selected oxygen intermediates. By acridine orange fluorescent staining criteria, toxoplasmas were resistant to up to either 10(-3) M reagent H2O2 or H...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185675/
https://www.ncbi.nlm.nih.gov/pubmed/92521
_version_ 1782145795541172224
collection PubMed
description A sensitive method for evaluating extracellular parasite viability was used to determine the in vitro susceptibility of virulent Toxoplasma gondii to selected oxygen intermediates. By acridine orange fluorescent staining criteria, toxoplasmas were resistant to up to either 10(-3) M reagent H2O2 or H2O2 generated by glucose-glucose oxidase. In keeping with a lack of sensitivity to H2O2, toxoplasmas contained endogenous catalase (5.7 x 10(-4) Baudhuin units/10(6) organisms). The addition of a peroxidase and halide, however, markedly accelerated killing and lowered the H2O2 requirement by 1,000-fold. In contrast, toxoplasmas were promptly killed after exposure to products generated by xanthine (1.5 x 10(-4) M) and xanthine oxidase (50 micrograms). The inhibition of this system's microbicidal activity by scavengers of O2- (superoxide dismutase) and H2O2 (catalase) indicated that although neither O2- nor H2O2 were toxoplasmacidal, their interaction was required for parasite killing. Quenching OH. and 1O2, presumed products of O2--H2O2 interaction, by mannitol, benzoate, diazabicyclooctane, and histidine, also inhibited toxoplasma killing by xanthine-xanthine oxidase. These findings suggested that O2- and H2O2 functioned in precursor roles and that OH. and 1O2 were toxoplasmacidal. The capacity of normal peritoneal macrophages to pinocytose an oxygen intermediate scavenger, soluble catalase, was also demonstrated. Appreciable extraphagosomal concentrations of catalase were achieved by exposing macrophages to 1 mg/ml of the enzyme for 3 h. Maintenance of high intracellular levels required constant exposure because interiorized catalase was rapidly degraded.
format Text
id pubmed-2185675
institution National Center for Biotechnology Information
language English
publishDate 1979
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21856752008-04-17 Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates J Exp Med Articles A sensitive method for evaluating extracellular parasite viability was used to determine the in vitro susceptibility of virulent Toxoplasma gondii to selected oxygen intermediates. By acridine orange fluorescent staining criteria, toxoplasmas were resistant to up to either 10(-3) M reagent H2O2 or H2O2 generated by glucose-glucose oxidase. In keeping with a lack of sensitivity to H2O2, toxoplasmas contained endogenous catalase (5.7 x 10(-4) Baudhuin units/10(6) organisms). The addition of a peroxidase and halide, however, markedly accelerated killing and lowered the H2O2 requirement by 1,000-fold. In contrast, toxoplasmas were promptly killed after exposure to products generated by xanthine (1.5 x 10(-4) M) and xanthine oxidase (50 micrograms). The inhibition of this system's microbicidal activity by scavengers of O2- (superoxide dismutase) and H2O2 (catalase) indicated that although neither O2- nor H2O2 were toxoplasmacidal, their interaction was required for parasite killing. Quenching OH. and 1O2, presumed products of O2--H2O2 interaction, by mannitol, benzoate, diazabicyclooctane, and histidine, also inhibited toxoplasma killing by xanthine-xanthine oxidase. These findings suggested that O2- and H2O2 functioned in precursor roles and that OH. and 1O2 were toxoplasmacidal. The capacity of normal peritoneal macrophages to pinocytose an oxygen intermediate scavenger, soluble catalase, was also demonstrated. Appreciable extraphagosomal concentrations of catalase were achieved by exposing macrophages to 1 mg/ml of the enzyme for 3 h. Maintenance of high intracellular levels required constant exposure because interiorized catalase was rapidly degraded. The Rockefeller University Press 1979-10-01 /pmc/articles/PMC2185675/ /pubmed/92521 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates
title Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates
title_full Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates
title_fullStr Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates
title_full_unstemmed Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates
title_short Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates
title_sort macrophage oxygen-dependent antimicrobial activity. i. susceptibility of toxoplasma gondii to oxygen intermediates
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185675/
https://www.ncbi.nlm.nih.gov/pubmed/92521